π Swarm Deployment Formations
last-synced: 2026-02-16T07:29:03.034Z
SCBE-AETHERMOORE Swarm Deployment Patterns
Coordination Model: Hyperbolic geometry (PoincarΓ© ball)
Agent Count: 6 (Six Sacred Tongues)
Formation Types: Hexagonal, Tetrahedral, Ring, Scatter
Fault Tolerance: Byzantine (f = 1, 2f+1 = 3 minimum)
Formation 1: Hexagonal Ring (Default)
Geometry
Agent 6 (DR)
β’
/ \
/ \
Agent 1 β’ β’ Agent 5
(KO) \ / (UM)
\ /
CENTER
/ \
/ \
Agent 2 β’ β’ Agent 4
(AV) \ / (CA)
\ /
β’
Agent 3 (RU)
Initial Positions (3D PoincarΓ© ball):
import numpy as np
def hexagonal_formation(radius=0.3):
positions = []
for i in range(6):
angle = i * (2 * np.pi / 6) # 60Β° spacing
x = radius * np.cos(angle)
y = radius * np.sin(angle)
z = 0.0 # Flat ring
positions.append([x, y, z])
return np.array(positions)
# Example output:
# Agent 0 (KO): [ 0.300, 0.000, 0.000]
# Agent 1 (AV): [ 0.150, 0.260, 0.000]
# Agent 2 (RU): [-0.150, 0.260, 0.000]
# Agent 3 (CA): [-0.300, 0.000, 0.000]
# Agent 4 (UM): [-0.150, -0.260, 0.000]
# Agent 5 (DR): [ 0.150, -0.260, 0.000]
Advantages:
-
β Symmetric (all agents equidistant)
-
β Low collision risk
-
β Easy to visualize
-
β Good for broadcast protocols
Disadvantages:
-
β Vulnerable to ring failure (break the ring)
-
β No depth (all z=0)
Use Cases:
-
Initial swarm bootstrap
-
Low-latency coordination (all agents ~equal distance)
-
Demo/visualization
Formation 2: Tetrahedral (3D)
Geometry
Agent 6 (DR)
β’
/|\
/ | \
/ | \
/ | \
Agent 1 β’ ---+--- β’ Agent 3
(KO) \ | / (RU)
\ | /
\ | /
\|/
β’
Agent 2 (AV)
(Agents 4, 5 at different z-levels)
Initial Positions:
def tetrahedral_formation(radius=0.3):
# 4 vertices of tetrahedron + 2 extra agents
positions = [
[ radius, 0.0, 0.0], # Agent 0 (KO)
[-radius/2, radius*0.866, 0.0], # Agent 1 (AV)
[-radius/2, -radius*0.866, 0.0], # Agent 2 (RU)
[ 0.0, 0.0, radius*1.633], # Agent 3 (CA) - top
[ 0.1, 0.1, -radius*0.5], # Agent 4 (UM) - below
[-0.1, -0.1, -radius*0.5], # Agent 5 (DR) - below
]
return np.array(positions)
Advantages:
-
β 3D depth (better fault tolerance)
-
β Maximal separation (hard to jam all agents)
-
β Natural load balancing
Disadvantages:
-
β Complex to compute distances
-
β Harder to visualize
Use Cases:
-
Space debris coordination (3D environment)
-
Drone swarms (altitude variation)
-
Byzantine fault tolerance (harder to compromise majority)
Formation 3: Concentric Rings (Hierarchical)
Geometry
Inner Ring (r=0.2)
Agent 1 (KO)
β’
/ \
Agent 2 β’ β― β’ Agent 3
(AV) (RU)
Outer Ring (r=0.5)
Agent 4 β’ β’ Agent 5
(CA) (UM)
\ Agent 6 /
(DR)
β’
Initial Positions:
def concentric_rings(inner_r=0.2, outer_r=0.5):
positions = [
# Inner ring (3 agents: KO, AV, RU)
[ inner_r * np.cos(0), inner_r * np.sin(0), 0.0],
[ inner_r * np.cos(2*np.pi/3), inner_r * np.sin(2*np.pi/3), 0.0],
[ inner_r * np.cos(4*np.pi/3), inner_r * np.sin(4*np.pi/3), 0.0],
# Outer ring (3 agents: CA, UM, DR)
[ outer_r * np.cos(np.pi/3), outer_r * np.sin(np.pi/3), 0.0],
[ outer_r * np.cos(np.pi), outer_r * np.sin(np.pi), 0.0],
[ outer_r * np.cos(5*np.pi/3), outer_r * np.sin(5*np.pi/3), 0.0],
]
return np.array(positions)
Advantages:
-
β Hierarchical coordination (inner = high-priority)
-
β Security tiers map naturally (inner = hidden IP)
-
β Easier to scale (add more rings)
Disadvantages:
-
β Inner ring is SPOF
-
β Outer ring agents far from each other
Use Cases:
-
IP tier mapping (inner = hidden, outer = public)
-
Priority-based task allocation
-
Gossip protocols (inner broadcast to outer)
Formation 4: Adaptive Scatter (Dynamic)
Geometry
No fixed positions β agents move based on:
-
Repulsion (avoid collisions)
-
Attraction (stay in swarm)
-
Drift (random walk)
-
Phase modulation (tongue-specific behavior)
Algorithm:
def adaptive_scatter_step(agents, dt=0.1):
for agent in agents:
force = np.zeros(3)
# 1. Repulsion from nearby agents
for other in agents:
if other.id == agent.id:
continue
d_hyp = hyperbolic_distance(agent.position, other.position)
if d_hyp < REPULSION_THRESHOLD: # 0.2
direction = agent.position - other.position
direction /= np.linalg.norm(direction)
# Repulsion strength = phase-weighted
strength = agent.weight * np.sin(agent.phase)
force += strength * direction
# 2. Attraction to swarm center
center = np.mean([a.position for a in agents], axis=0)
direction_to_center = center - agent.position
force += 0.1 * direction_to_center
# 3. Drift (Gaussian noise)
drift = np.random.normal(0, DRIFT_SIGMA, 3) # Ο=0.05
force += drift
# 4. Update position (Euler integration)
new_pos = agent.position + force * dt
# 5. Project back into PoincarΓ© ball (||pos|| < 1)
norm = np.linalg.norm(new_pos)
if norm >= 1.0:
new_pos = 0.95 * new_pos / norm # Bounce off boundary
agent.position = new_pos
Advantages:
-
β Self-organizing (no central controller)
-
β Jam-resistant (constantly moving)
-
β Adapts to agent failures
-
β Realistic for space/drone swarms
Disadvantages:
-
β Unpredictable (hard to debug)
-
β High communication overhead (constant position updates)
Use Cases:
-
SpaceX Starlink coordination
-
Adversarial environments (jamming, attacks)
-
Research/simulation
Byzantine Fault Tolerance Configurations
Problem Statement
Byzantine Fault: Agent sends conflicting messages to different agents (malicious or buggy)
Theorem: Need 3f + 1 agents to tolerate f Byzantine faults
Examples:
-
6 agents β tolerate 1 Byzantine fault (f=1, 3Γ1+1=4, with 2 extra)
-
9 agents β tolerate 2 Byzantine faults (f=2, 3Γ2+1=7, with 2 extra)
Detection Algorithm
def detect_byzantine_agent(agents):
"""
Check if any agent is sending conflicting position reports
"""
# Step 1: Collect position reports from each agent
reports = {} # agent_id -> {reported_by: position}
for agent in agents:
reports[agent.id] = {}
for peer in agents:
if peer.id != agent.id:
# Ask peer: "What is agent X's position?"
reported_pos = peer.get_peer_position(agent.id)
reports[agent.id][peer.id] = reported_pos
# Step 2: Check for inconsistencies
byzantine = []
for agent_id, peer_reports in reports.items():
positions = list(peer_reports.values())
# If different peers report wildly different positions
if len(set(map(tuple, positions))) > 1:
# Compute variance
variance = np.var(positions, axis=0).sum()
if variance > BYZANTINE_THRESHOLD: # 0.1
byzantine.append(agent_id)
return byzantine
Action on Detection:
if byzantine_agents:
for agent_id in byzantine_agents:
# 1. Quarantine (Sacred Egg)
await quarantine_agent(agent_id)
# 2. Alert
await publishKafkaEvent({
'type': 'agent.byzantine',
'payload': {'agentId': agent_id},
})
# 3. Replace with spare
new_agent = await spawn_replacement_agent()
Rogue Agent Scenarios
Scenario 1: Phase-Null Intruder
Attack: Malicious agent joins with phase = null (invalid)
Detection:
if agent.phase is None or not (0 <= agent.phase < 2*np.pi):
raise ValueError(f"Invalid phase: {agent.phase}")
SCBE L10 Response:
-
Coherence drops: 0.92 β 0.58 (below 0.65 threshold)
-
QUARANTINE triggered at step 4
-
Rogue agent pushed to boundary (r = 0.87)
-
Legitimate agents maintain r < 0.4
Scenario 2: Replay Attack
Attack: Attacker replays old RWP envelope
Detection:
# RWP v2.1 has replay window (60 seconds)
age = Date.now() - envelope.timestamp
if age > envelope.replayWindow:
raise Error('Envelope expired (replay detected)')
# Also check nonce uniqueness (Bloom filter)
if nonce_bloom_filter.contains(envelope.nonce):
raise Error('Duplicate nonce (replay detected)')
Scenario 3: Sybil Attack
Attack: Single adversary creates many fake agent identities
Defense: Proof-of-Work (PoW) for agent registration
async def register_agent(public_key: bytes) -> str:
# Require PoW: Find nonce where SHA256(pubkey + nonce) has N leading zeros
required_difficulty = 5 # 5 leading zeros β 2^20 hashes
# Client must provide:
# - public_key
# - nonce (such that hash has 5 leading zeros)
hash_input = public_key + nonce
hash_output = sha256(hash_input)
leading_zeros = count_leading_zeros(hash_output)
if leading_zeros < required_difficulty:
raise ValueError('Insufficient proof-of-work')
# Register agent (rate-limited to 1 per minute per IP)
return register_in_vault(public_key)
SpaceX Starlink Demo Architecture
Scenario
Objective: Coordinate 1,000+ Starlink satellites for debris avoidance
Constraints:
-
RF bandwidth: Limited (canβt broadcast full 6-tongue protocol)
-
Latency: 500ms round-trip (LEO orbit)
-
Jamming: Adversarial (need jam-resistant coordination)
Solution: Proximity-Optimized Protocol
def select_protocol_mode(distance_to_nearest_peer):
if distance_to_nearest_peer < 0.1: # Very close
return 'minimal' # 1 tongue (KO only)
elif distance_to_nearest_peer < 0.3: # Close
return 'compact' # 2 tongues (KO + AV)
else: # Far apart
return 'full' # All 6 tongues
# Bandwidth savings:
# Minimal: 95% reduction (1/6 tongues)
# Compact: 70% reduction (2/6 tongues)
Deployment
Step 1: Bootstrap
# Launch 6 seed satellites (one per tongue)
for tongue in KO AV RU CA UM DR; do
starlink-cli deploy --tongue=$tongue --orbit=LEO-shell-1
done
Step 2: Swarm Join
# Each new satellite joins via nearest seed
for i in {1..1000}; do
starlink-cli join --seed-ip=$SEED_KO_IP
done
Step 3: Formation
1000 satellites in adaptive scatter formation:
β’ 167 agents per tongue (1000 / 6 β 167)
β’ Concentric shells (altitude tiers)
β’ Continuous repositioning (debris avoidance)
Step 4: Collision Avoidance
# Real-time position tracking
for satellite in swarm:
if detect_debris_collision_risk(satellite):
# Emergency maneuver (no consensus needed)
satellite.execute_burn(delta_v)
# Notify swarm (so others don't fill the gap)
broadcast_via_tongue('KO', {
'type': 'collision.avoidance',
'satellite_id': satellite.id,
'new_position': satellite.position,
})
Visualization Tools
Matplotlib 3D Plot
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def plot_swarm(agents):
fig = plt.figure(figsize=(12, 12))
ax = fig.add_subplot(111, projection='3d')
# Plot PoincarΓ© ball boundary
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)
x_sphere = np.outer(np.cos(u), np.sin(v))
y_sphere = np.outer(np.sin(u), np.sin(v))
z_sphere = np.outer(np.ones(np.size(u)), np.cos(v))
ax.plot_surface(x_sphere, y_sphere, z_sphere, alpha=0.1, color='gray')
# Plot agents
colors = ['red', 'orange', 'yellow', 'green', 'blue', 'purple']
for i, agent in enumerate(agents):
x, y, z = agent.position
ax.scatter(x, y, z, c=colors[i], s=200, marker='o')
ax.text(x, y, z, f" {agent.tongue}", fontsize=12)
# Plot connections (if distance < threshold)
for i, a1 in enumerate(agents):
for j, a2 in enumerate(agents):
if i >= j:
continue
d = hyperbolic_distance(a1.position, a2.position)
if d < 0.5:
ax.plot([a1.position[0], a2.position[0]],
[a1.position[1], a2.position[1]],
[a1.position[2], a2.position[2]],
'k-', alpha=0.3)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_title('SCBE-AETHERMOORE Swarm (PoincarΓ© Ball)')
plt.show()
Live Dashboard (Grafana)
# Grafana dashboard JSON
{
"panels": [
{
"title": "Agent Positions (2D Projection)",
"type": "grafana-worldmap-panel",
"targets": [
{
"expr": "agent_position_x"
},
{
"expr": "agent_position_y"
}
]
},
{
"title": "Swarm Coherence",
"type": "graph",
"targets": [
{
"expr": "avg(agent_coherence)"
}
],
"alert": {
"condition": "avg < 0.65",
"message": "Swarm coherence below threshold!"
}
},
{
"title": "Hyperbolic Distance Matrix",
"type": "heatmap",
"targets": [
{
"expr": "hyperbolic_distance_matrix"
}
]
}
]
}
Production Deployment
Google Cloud Run Configuration
apiVersion: serving.knative.dev/v1
kind: Service
metadata:
name: scbe-swarm-agent
namespace: default
spec:
template:
metadata:
annotations:
autoscaling.knative.dev/minScale: "6" # 1 per tongue
autoscaling.knative.dev/maxScale: "1000"
spec:
serviceAccountName: scbe-aethermoore-swarm-agent@gen-lang-client-0103521392.iam.gserviceaccount.com
containers:
- image: gcr.io/gen-lang-client-0103521392/scbe-swarm-agent:v3.0.0
env:
- name: TONGUE
valueFrom:
fieldRef:
fieldPath: metadata.labels['tongue']
- name: IP_TIER
value: "private"
- name: KAFKA_BROKERS
value: "kafka-1:9093,kafka-2:9093,kafka-3:9093"
resources:
limits:
memory: "512Mi"
cpu: "1000m"
Summary
Formation Types:
-
Hexagonal β Default, symmetric, easy to visualize
-
Tetrahedral β 3D, fault-tolerant, space applications
-
Concentric Rings β Hierarchical, IP tier mapping
-
Adaptive Scatter β Dynamic, jam-resistant, self-organizing
Byzantine Tolerance: 6 agents β 1 fault tolerated
Rogue Agent Detection:
-
Phase-null intruders
-
Replay attacks (RWP nonce + timestamp)
-
Sybil attacks (PoW + rate limiting)
SpaceX Demo: 1,000+ satellites, proximity-optimized protocol, 95% bandwidth savings
Next Steps:
-
See π§ PHDM as AI Brain Architecture - The Geometric Skull for geometric integrity verification
-
See Untitled for mode-switching specialist roles within squads
AWS Lambda Deployment Status (Jan 2026)
Status: β DEPLOYED AND TESTED
Function Name: scbe-swarm-coordinator Region: us-west-2 Runtime: Python 3.14
Test Results:
-
Hexagonal formation: β PASSED
-
6 agents deployed with PoincarΓ© ball coordinates
-
Byzantine consensus (2f+1=3): β VERIFIED
Supported Operations:
-
deploy - Initialize swarm with specified formation
-
status - Get current swarm status
-
test - Run Byzantine consensus test
Integration:
-
Zapier webhook trigger configured
-
Google Sheets logging ready
-
Slack notifications setup