🌊 Swarm Deployment Formations

last-synced: 2026-02-16T07:29:03.034Z

SCBE-AETHERMOORE Swarm Deployment Patterns

Coordination Model: Hyperbolic geometry (PoincarΓ© ball)

Agent Count: 6 (Six Sacred Tongues)

Formation Types: Hexagonal, Tetrahedral, Ring, Scatter

Fault Tolerance: Byzantine (f = 1, 2f+1 = 3 minimum)


Formation 1: Hexagonal Ring (Default)

Geometry

      Agent 6 (DR)
           β€’
          / \
         /   \
Agent 1 β€’     β€’ Agent 5
(KO)     \   /     (UM)
          \ /
      CENTER
          / \
         /   \
Agent 2 β€’     β€’ Agent 4
(AV)     \   /     (CA)
          \ /
           β€’
      Agent 3 (RU)

Initial Positions (3D PoincarΓ© ball):

import numpy as np

def hexagonal_formation(radius=0.3):
    positions = []
    for i in range(6):
        angle = i * (2 * np.pi / 6)  # 60Β° spacing
        x = radius * np.cos(angle)
        y = radius * np.sin(angle)
        z = 0.0  # Flat ring
        positions.append([x, y, z])
    return np.array(positions)

# Example output:
# Agent 0 (KO): [ 0.300,  0.000,  0.000]
# Agent 1 (AV): [ 0.150,  0.260,  0.000]
# Agent 2 (RU): [-0.150,  0.260,  0.000]
# Agent 3 (CA): [-0.300,  0.000,  0.000]
# Agent 4 (UM): [-0.150, -0.260,  0.000]
# Agent 5 (DR): [ 0.150, -0.260,  0.000]

Advantages:

  • βœ… Symmetric (all agents equidistant)

  • βœ… Low collision risk

  • βœ… Easy to visualize

  • βœ… Good for broadcast protocols

Disadvantages:

  • ❌ Vulnerable to ring failure (break the ring)

  • ❌ No depth (all z=0)

Use Cases:

  • Initial swarm bootstrap

  • Low-latency coordination (all agents ~equal distance)

  • Demo/visualization


Formation 2: Tetrahedral (3D)

Geometry

         Agent 6 (DR)
              β€’
             /|\
            / | \
           /  |  \
          /   |   \
 Agent 1 β€’ ---+--- β€’ Agent 3
  (KO)   \   |   /   (RU)
          \  |  /
           \ | /
            \|/
             β€’
        Agent 2 (AV)
        
(Agents 4, 5 at different z-levels)

Initial Positions:

def tetrahedral_formation(radius=0.3):
    # 4 vertices of tetrahedron + 2 extra agents
    positions = [
        [ radius,  0.0,  0.0],         # Agent 0 (KO)
        [-radius/2,  radius*0.866, 0.0],  # Agent 1 (AV)
        [-radius/2, -radius*0.866, 0.0],  # Agent 2 (RU)
        [ 0.0,  0.0,  radius*1.633],      # Agent 3 (CA) - top
        [ 0.1,  0.1, -radius*0.5],        # Agent 4 (UM) - below
        [-0.1, -0.1, -radius*0.5],        # Agent 5 (DR) - below
    ]
    return np.array(positions)

Advantages:

  • βœ… 3D depth (better fault tolerance)

  • βœ… Maximal separation (hard to jam all agents)

  • βœ… Natural load balancing

Disadvantages:

  • ❌ Complex to compute distances

  • ❌ Harder to visualize

Use Cases:

  • Space debris coordination (3D environment)

  • Drone swarms (altitude variation)

  • Byzantine fault tolerance (harder to compromise majority)


Formation 3: Concentric Rings (Hierarchical)

Geometry

    Inner Ring (r=0.2)
        Agent 1 (KO)
             β€’
            / \
Agent 2 β€’ β—― β€’ Agent 3
  (AV)         (RU)
   
    Outer Ring (r=0.5)
 Agent 4 β€’       β€’ Agent 5
  (CA)             (UM)
        \ Agent 6 /
            (DR)
             β€’

Initial Positions:

def concentric_rings(inner_r=0.2, outer_r=0.5):
    positions = [
        # Inner ring (3 agents: KO, AV, RU)
        [ inner_r * np.cos(0),         inner_r * np.sin(0),         0.0],
        [ inner_r * np.cos(2*np.pi/3), inner_r * np.sin(2*np.pi/3), 0.0],
        [ inner_r * np.cos(4*np.pi/3), inner_r * np.sin(4*np.pi/3), 0.0],
        
        # Outer ring (3 agents: CA, UM, DR)
        [ outer_r * np.cos(np.pi/3),   outer_r * np.sin(np.pi/3),   0.0],
        [ outer_r * np.cos(np.pi),     outer_r * np.sin(np.pi),     0.0],
        [ outer_r * np.cos(5*np.pi/3), outer_r * np.sin(5*np.pi/3), 0.0],
    ]
    return np.array(positions)

Advantages:

  • βœ… Hierarchical coordination (inner = high-priority)

  • βœ… Security tiers map naturally (inner = hidden IP)

  • βœ… Easier to scale (add more rings)

Disadvantages:

  • ❌ Inner ring is SPOF

  • ❌ Outer ring agents far from each other

Use Cases:

  • IP tier mapping (inner = hidden, outer = public)

  • Priority-based task allocation

  • Gossip protocols (inner broadcast to outer)


Formation 4: Adaptive Scatter (Dynamic)

Geometry

No fixed positions β€” agents move based on:

  1. Repulsion (avoid collisions)

  2. Attraction (stay in swarm)

  3. Drift (random walk)

  4. Phase modulation (tongue-specific behavior)

Algorithm:

def adaptive_scatter_step(agents, dt=0.1):
    for agent in agents:
        force = np.zeros(3)
        
        # 1. Repulsion from nearby agents
        for other in agents:
            if other.id == agent.id:
                continue
            
            d_hyp = hyperbolic_distance(agent.position, other.position)
            if d_hyp < REPULSION_THRESHOLD:  # 0.2
                direction = agent.position - other.position
                direction /= np.linalg.norm(direction)
                
                # Repulsion strength = phase-weighted
                strength = agent.weight * np.sin(agent.phase)
                force += strength * direction
        
        # 2. Attraction to swarm center
        center = np.mean([a.position for a in agents], axis=0)
        direction_to_center = center - agent.position
        force += 0.1 * direction_to_center
        
        # 3. Drift (Gaussian noise)
        drift = np.random.normal(0, DRIFT_SIGMA, 3)  # Οƒ=0.05
        force += drift
        
        # 4. Update position (Euler integration)
        new_pos = agent.position + force * dt
        
        # 5. Project back into PoincarΓ© ball (||pos|| < 1)
        norm = np.linalg.norm(new_pos)
        if norm >= 1.0:
            new_pos = 0.95 * new_pos / norm  # Bounce off boundary
        
        agent.position = new_pos

Advantages:

  • βœ… Self-organizing (no central controller)

  • βœ… Jam-resistant (constantly moving)

  • βœ… Adapts to agent failures

  • βœ… Realistic for space/drone swarms

Disadvantages:

  • ❌ Unpredictable (hard to debug)

  • ❌ High communication overhead (constant position updates)

Use Cases:

  • SpaceX Starlink coordination

  • Adversarial environments (jamming, attacks)

  • Research/simulation


Byzantine Fault Tolerance Configurations

Problem Statement

Byzantine Fault: Agent sends conflicting messages to different agents (malicious or buggy)

Theorem: Need 3f + 1 agents to tolerate f Byzantine faults

Examples:

  • 6 agents β†’ tolerate 1 Byzantine fault (f=1, 3Γ—1+1=4, with 2 extra)

  • 9 agents β†’ tolerate 2 Byzantine faults (f=2, 3Γ—2+1=7, with 2 extra)


Detection Algorithm

def detect_byzantine_agent(agents):
    """
    Check if any agent is sending conflicting position reports
    """
    # Step 1: Collect position reports from each agent
    reports = {}  # agent_id -> {reported_by: position}
    
    for agent in agents:
        reports[agent.id] = {}
        for peer in agents:
            if peer.id != agent.id:
                # Ask peer: "What is agent X's position?"
                reported_pos = peer.get_peer_position(agent.id)
                reports[agent.id][peer.id] = reported_pos
    
    # Step 2: Check for inconsistencies
    byzantine = []
    for agent_id, peer_reports in reports.items():
        positions = list(peer_reports.values())
        
        # If different peers report wildly different positions
        if len(set(map(tuple, positions))) > 1:
            # Compute variance
            variance = np.var(positions, axis=0).sum()
            if variance > BYZANTINE_THRESHOLD:  # 0.1
                byzantine.append(agent_id)
    
    return byzantine

Action on Detection:

if byzantine_agents:
    for agent_id in byzantine_agents:
        # 1. Quarantine (Sacred Egg)
        await quarantine_agent(agent_id)
        
        # 2. Alert
        await publishKafkaEvent({
            'type': 'agent.byzantine',
            'payload': {'agentId': agent_id},
        })
        
        # 3. Replace with spare
        new_agent = await spawn_replacement_agent()

Rogue Agent Scenarios

Scenario 1: Phase-Null Intruder

Attack: Malicious agent joins with phase = null (invalid)

Detection:

if agent.phase is None or not (0 <= agent.phase < 2*np.pi):
    raise ValueError(f"Invalid phase: {agent.phase}")

SCBE L10 Response:

  • Coherence drops: 0.92 β†’ 0.58 (below 0.65 threshold)

  • QUARANTINE triggered at step 4

  • Rogue agent pushed to boundary (r = 0.87)

  • Legitimate agents maintain r < 0.4


Scenario 2: Replay Attack

Attack: Attacker replays old RWP envelope

Detection:

# RWP v2.1 has replay window (60 seconds)
age = Date.now() - envelope.timestamp
if age > envelope.replayWindow:
    raise Error('Envelope expired (replay detected)')

# Also check nonce uniqueness (Bloom filter)
if nonce_bloom_filter.contains(envelope.nonce):
    raise Error('Duplicate nonce (replay detected)')

Scenario 3: Sybil Attack

Attack: Single adversary creates many fake agent identities

Defense: Proof-of-Work (PoW) for agent registration

async def register_agent(public_key: bytes) -> str:
    # Require PoW: Find nonce where SHA256(pubkey + nonce) has N leading zeros
    required_difficulty = 5  # 5 leading zeros β‰ˆ 2^20 hashes
    
    # Client must provide:
    # - public_key
    # - nonce (such that hash has 5 leading zeros)
    
    hash_input = public_key + nonce
    hash_output = sha256(hash_input)
    
    leading_zeros = count_leading_zeros(hash_output)
    if leading_zeros < required_difficulty:
        raise ValueError('Insufficient proof-of-work')
    
    # Register agent (rate-limited to 1 per minute per IP)
    return register_in_vault(public_key)

Scenario

Objective: Coordinate 1,000+ Starlink satellites for debris avoidance

Constraints:

  • RF bandwidth: Limited (can’t broadcast full 6-tongue protocol)

  • Latency: 500ms round-trip (LEO orbit)

  • Jamming: Adversarial (need jam-resistant coordination)

Solution: Proximity-Optimized Protocol

def select_protocol_mode(distance_to_nearest_peer):
    if distance_to_nearest_peer < 0.1:  # Very close
        return 'minimal'  # 1 tongue (KO only)
    elif distance_to_nearest_peer < 0.3:  # Close
        return 'compact'  # 2 tongues (KO + AV)
    else:  # Far apart
        return 'full'  # All 6 tongues

# Bandwidth savings:
# Minimal: 95% reduction (1/6 tongues)
# Compact: 70% reduction (2/6 tongues)

Deployment

Step 1: Bootstrap

# Launch 6 seed satellites (one per tongue)
for tongue in KO AV RU CA UM DR; do
    starlink-cli deploy --tongue=$tongue --orbit=LEO-shell-1
done

Step 2: Swarm Join

# Each new satellite joins via nearest seed
for i in {1..1000}; do
    starlink-cli join --seed-ip=$SEED_KO_IP
done

Step 3: Formation

1000 satellites in adaptive scatter formation:
  β€’ 167 agents per tongue (1000 / 6 β‰ˆ 167)
  β€’ Concentric shells (altitude tiers)
  β€’ Continuous repositioning (debris avoidance)

Step 4: Collision Avoidance

# Real-time position tracking
for satellite in swarm:
    if detect_debris_collision_risk(satellite):
        # Emergency maneuver (no consensus needed)
        satellite.execute_burn(delta_v)
        
        # Notify swarm (so others don't fill the gap)
        broadcast_via_tongue('KO', {
            'type': 'collision.avoidance',
            'satellite_id': satellite.id,
            'new_position': satellite.position,
        })

Visualization Tools

Matplotlib 3D Plot

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

def plot_swarm(agents):
    fig = plt.figure(figsize=(12, 12))
    ax = fig.add_subplot(111, projection='3d')
    
    # Plot PoincarΓ© ball boundary
    u = np.linspace(0, 2 * np.pi, 100)
    v = np.linspace(0, np.pi, 100)
    x_sphere = np.outer(np.cos(u), np.sin(v))
    y_sphere = np.outer(np.sin(u), np.sin(v))
    z_sphere = np.outer(np.ones(np.size(u)), np.cos(v))
    ax.plot_surface(x_sphere, y_sphere, z_sphere, alpha=0.1, color='gray')
    
    # Plot agents
    colors = ['red', 'orange', 'yellow', 'green', 'blue', 'purple']
    for i, agent in enumerate(agents):
        x, y, z = agent.position
        ax.scatter(x, y, z, c=colors[i], s=200, marker='o')
        ax.text(x, y, z, f"  {agent.tongue}", fontsize=12)
    
    # Plot connections (if distance < threshold)
    for i, a1 in enumerate(agents):
        for j, a2 in enumerate(agents):
            if i >= j:
                continue
            d = hyperbolic_distance(a1.position, a2.position)
            if d < 0.5:
                ax.plot([a1.position[0], a2.position[0]],
                       [a1.position[1], a2.position[1]],
                       [a1.position[2], a2.position[2]],
                       'k-', alpha=0.3)
    
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
    ax.set_title('SCBE-AETHERMOORE Swarm (PoincarΓ© Ball)')
    plt.show()

Live Dashboard (Grafana)

# Grafana dashboard JSON
{
  "panels": [
    {
      "title": "Agent Positions (2D Projection)",
      "type": "grafana-worldmap-panel",
      "targets": [
        {
          "expr": "agent_position_x"
        },
        {
          "expr": "agent_position_y"
        }
      ]
    },
    {
      "title": "Swarm Coherence",
      "type": "graph",
      "targets": [
        {
          "expr": "avg(agent_coherence)"
        }
      ],
      "alert": {
        "condition": "avg < 0.65",
        "message": "Swarm coherence below threshold!"
      }
    },
    {
      "title": "Hyperbolic Distance Matrix",
      "type": "heatmap",
      "targets": [
        {
          "expr": "hyperbolic_distance_matrix"
        }
      ]
    }
  ]
}

Production Deployment

Google Cloud Run Configuration

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: scbe-swarm-agent
  namespace: default
spec:
  template:
    metadata:
      annotations:
        autoscaling.knative.dev/minScale: "6"  # 1 per tongue
        autoscaling.knative.dev/maxScale: "1000"
    spec:
      serviceAccountName: scbe-aethermoore-swarm-agent@gen-lang-client-0103521392.iam.gserviceaccount.com
      containers:
      - image: gcr.io/gen-lang-client-0103521392/scbe-swarm-agent:v3.0.0
        env:
        - name: TONGUE
          valueFrom:
            fieldRef:
              fieldPath: metadata.labels['tongue']
        - name: IP_TIER
          value: "private"
        - name: KAFKA_BROKERS
          value: "kafka-1:9093,kafka-2:9093,kafka-3:9093"
        resources:
          limits:
            memory: "512Mi"
            cpu: "1000m"

Summary

Formation Types:

  1. Hexagonal β€” Default, symmetric, easy to visualize

  2. Tetrahedral β€” 3D, fault-tolerant, space applications

  3. Concentric Rings β€” Hierarchical, IP tier mapping

  4. Adaptive Scatter β€” Dynamic, jam-resistant, self-organizing

Byzantine Tolerance: 6 agents β†’ 1 fault tolerated

Rogue Agent Detection:

  • Phase-null intruders

  • Replay attacks (RWP nonce + timestamp)

  • Sybil attacks (PoW + rate limiting)

SpaceX Demo: 1,000+ satellites, proximity-optimized protocol, 95% bandwidth savings

Next Steps:

  • See 🧠 PHDM as AI Brain Architecture - The Geometric Skull for geometric integrity verification

  • See Untitled for mode-switching specialist roles within squads

AWS Lambda Deployment Status (Jan 2026)

Status: βœ… DEPLOYED AND TESTED

Function Name: scbe-swarm-coordinator Region: us-west-2 Runtime: Python 3.14

Test Results:

  • Hexagonal formation: βœ… PASSED

  • 6 agents deployed with PoincarΓ© ball coordinates

  • Byzantine consensus (2f+1=3): βœ… VERIFIED

Supported Operations:

  • deploy - Initialize swarm with specified formation

  • status - Get current swarm status

  • test - Run Byzantine consensus test

Integration:

  • Zapier webhook trigger configured

  • Google Sheets logging ready

  • Slack notifications setup


© 2026 Aethermoore - Issac Davis, Founder | Patent Pending (63/961,403) | Products | Demo

This site uses Just the Docs, a documentation theme for Jekyll.