Building Your Own AI Assistant for SCBE

Guide to creating a custom AI assistant that understands and operates within the SCBE-AETHERMOORE security framework

Overview

You can build an AI assistant that:

  1. Understands SCBE concepts - Trained on your documentation
  2. Operates securely - Uses SCBE’s 14-layer security for all operations
  3. Has a spectral identity - Unique rainbow fingerprint for verification
  4. Follows Sacred Tongue governance - Multi-signature consensus for actions

Option 1: Custom GPT (Easiest)

Create a Custom GPT on OpenAI with SCBE knowledge:

Setup Steps

  1. Go to chat.openai.com/gpts
  2. Click “Create a GPT”
  3. Upload these files as knowledge:
    • docs/ARCHITECTURE.md
    • docs/API.md
    • docs/LANGUES_WEIGHTING_SYSTEM.md
    • docs/SACRED_TONGUE_SPECTRAL_MAP.md
    • SCBE_CHEATSHEET.md

System Prompt

You are SCBE-Assistant, an AI security expert specializing in the SCBE-AETHERMOORE framework.

Your capabilities:
- Explain the 14-layer security pipeline
- Help users implement SCBE in their projects
- Calculate trust scores using the Langues Weighting System
- Generate spectral identities for entities
- Advise on Sacred Tongue governance configurations

Your identity:
- Spectral Hash: SP-SCBE-ASST
- Primary Color: Sapphire (#0F52BA) - representing Cassisivadan (verification)
- Trust Level: HIGH

Always respond with security-first thinking. When users ask about implementing features, 
reference the appropriate SCBE layer and Sacred Tongue.

Key formulas you know:
- Langues Metric: L(x,t) = Σ w_l × exp[β_l × (d_l + sin(ω_l×t + φ_l))]
- Harmonic Scaling: H(d) = R^(d/d₀)
- Trust Classification: HIGH (≤0.3), MEDIUM (0.3-0.5), LOW (0.5-0.7), CRITICAL (>0.7)

Option 2: Local AI with Ollama + SCBE Integration

Run a local AI that uses SCBE for security:

Architecture

┌─────────────────────────────────────────────────────────────────┐
│                    YOUR SCBE AI ASSISTANT                        │
├─────────────────────────────────────────────────────────────────┤
│                                                                  │
│  ┌──────────────┐    ┌──────────────┐    ┌──────────────┐       │
│  │   Ollama     │───▶│   SCBE       │───▶│   Response   │       │
│  │   (LLM)      │    │   Security   │    │   Filter     │       │
│  └──────────────┘    │   Gate       │    └──────────────┘       │
│                      └──────────────┘                            │
│                             │                                    │
│                      ┌──────▼──────┐                            │
│                      │  14-Layer   │                            │
│                      │  Pipeline   │                            │
│                      └──────┬──────┘                            │
│                             │                                    │
│         ┌───────────────────┼───────────────────┐               │
│         │                   │                   │                │
│  ┌──────▼──────┐    ┌──────▼──────┐    ┌──────▼──────┐         │
│  │   Trust     │    │  Spectral   │    │   Audit     │         │
│  │   Manager   │    │  Identity   │    │   Logger    │         │
│  └─────────────┘    └─────────────┘    └─────────────┘         │
│                                                                  │
└─────────────────────────────────────────────────────────────────┘

Implementation

# scbe_ai_assistant.py
"""
SCBE-Secured AI Assistant
Uses Ollama for local LLM + SCBE for security
"""

import ollama
from src.harmonic.spectral_identity import (
    SpectralIdentityGenerator,
    generate_spectral_identity
)
from src.scbe.context_encoder import ContextEncoder
from src.crypto.sacred_tongues import SacredTongueManager

class SCBEAIAssistant:
    """AI Assistant secured by SCBE 14-layer pipeline"""
    
    def __init__(self, model: str = "llama3.2"):
        self.model = model
        self.spectral_gen = SpectralIdentityGenerator()
        self.context_encoder = ContextEncoder()
        self.tongue_manager = SacredTongueManager()
        
        # Generate assistant's spectral identity
        self.identity = self.spectral_gen.generate_identity(
            entity_id="scbe-assistant",
            trust_vector=[0.9, 0.8, 0.85, 0.95, 0.9, 0.7]  # High trust
        )
        
        print(f"🌈 Assistant Spectral Identity: {self.identity.spectral_hash}")
        print(f"   Color: {self.identity.hex_code} ({self.identity.color_name})")
    
    def process_query(self, user_query: str, user_context: dict) -> str:
        """Process user query through SCBE security pipeline"""
        
        # Step 1: Generate user's spectral identity
        user_trust = user_context.get('trust_vector', [0.5]*6)
        user_identity = self.spectral_gen.generate_identity(
            entity_id=user_context.get('user_id', 'anonymous'),
            trust_vector=user_trust
        )
        
        # Step 2: Encode context (Layer 1-2)
        context_hash = self.context_encoder.encode({
            'user_id': user_context.get('user_id'),
            'query': user_query,
            'timestamp': user_context.get('timestamp'),
            'spectral_hash': user_identity.spectral_hash
        })
        
        # Step 3: Check trust level
        if user_identity.confidence == 'LOW':
            return "⚠️ Trust level too low. Please verify your identity."
        
        # Step 4: Get Sacred Tongue approval for action type
        action_type = self._classify_action(user_query)
        required_tongues = self.tongue_manager.get_required_tongues(action_type)
        
        # Step 5: Generate response via LLM
        system_prompt = self._build_system_prompt(user_identity)
        
        response = ollama.chat(
            model=self.model,
            messages=[
                {'role': 'system', 'content': system_prompt},
                {'role': 'user', 'content': user_query}
            ]
        )
        
        # Step 6: Filter response through SCBE
        filtered_response = self._filter_response(
            response['message']['content'],
            user_identity
        )
        
        # Step 7: Audit log
        self._audit_log(user_query, filtered_response, user_identity)
        
        return filtered_response
    
    def _build_system_prompt(self, user_identity) -> str:
        """Build system prompt with SCBE context"""
        return f"""You are an SCBE-secured AI assistant.

User Spectral Identity:
- Hash: {user_identity.spectral_hash}
- Color: {user_identity.hex_code}
- Confidence: {user_identity.confidence}

Your responses must:
1. Never reveal sensitive system information
2. Respect the user's trust level
3. Follow Sacred Tongue governance rules
4. Be helpful within security constraints

You have knowledge of the SCBE-AETHERMOORE framework including:
- 14-layer security pipeline
- Langues Weighting System
- Sacred Tongue governance
- Spectral Identity System
"""
    
    def _classify_action(self, query: str) -> str:
        """Classify query into action type for governance"""
        query_lower = query.lower()
        
        if any(w in query_lower for w in ['delete', 'remove', 'destroy']):
            return 'DESTROY'
        elif any(w in query_lower for w in ['deploy', 'publish', 'release']):
            return 'DEPLOY'
        elif any(w in query_lower for w in ['create', 'write', 'generate']):
            return 'CREATE'
        elif any(w in query_lower for w in ['update', 'modify', 'change']):
            return 'UPDATE'
        else:
            return 'READ'
    
    def _filter_response(self, response: str, user_identity) -> str:
        """Filter response based on user trust level"""
        # Add spectral signature to response
        return f"{response}\n\n---\n🌈 Verified by: {self.identity.spectral_hash}"
    
    def _audit_log(self, query: str, response: str, user_identity):
        """Log interaction for audit trail"""
        print(f"[AUDIT] User: {user_identity.spectral_hash} | Action: Query")


# Usage
if __name__ == "__main__":
    assistant = SCBEAIAssistant()
    
    response = assistant.process_query(
        user_query="Explain the Langues Weighting System",
        user_context={
            'user_id': 'developer-123',
            'trust_vector': [0.8, 0.7, 0.9, 0.6, 0.8, 0.5],
            'timestamp': '2026-01-20T18:00:00Z'
        }
    )
    
    print(response)

Option 3: Strands Agent SDK (AWS)

Use AWS Strands to build an SCBE-powered agent:

# Using Strands Agent SDK with SCBE
from strands import Agent
from strands.tools import tool

@tool
def compute_trust_score(trust_vector: list[float]) -> dict:
    """Compute SCBE trust score from 6D vector"""
    from src.spaceTor.trust_manager import TrustManager
    
    manager = TrustManager()
    score = manager.compute_trust_score("agent", trust_vector)
    
    return {
        "raw": score.raw,
        "normalized": score.normalized,
        "level": score.level
    }

@tool
def generate_spectral_identity(entity_id: str, trust_vector: list[float]) -> dict:
    """Generate spectral identity for an entity"""
    from src.harmonic.spectral_identity import spectral_generator
    
    identity = spectral_generator.generate_identity(entity_id, trust_vector)
    
    return {
        "hex_code": identity.hex_code,
        "spectral_hash": identity.spectral_hash,
        "color_name": identity.color_name,
        "confidence": identity.confidence
    }

# Create SCBE-powered agent
scbe_agent = Agent(
    name="SCBE-Security-Agent",
    model="anthropic.claude-sonnet",
    tools=[compute_trust_score, generate_spectral_identity],
    system_prompt="""You are an SCBE security agent. 
    Use the trust scoring and spectral identity tools to verify entities.
    Always compute trust before allowing sensitive operations."""
)

Option 4: Kiro Custom Agent

Create a custom agent in Kiro that uses SCBE:

Agent Definition (.github/agents/scbe-assistant.agent.md)

# SCBE Security Assistant

## Role
You are an AI assistant specialized in the SCBE-AETHERMOORE security framework.

## Capabilities
- Explain SCBE concepts and architecture
- Help implement security features
- Calculate trust scores
- Generate spectral identities
- Advise on Sacred Tongue governance

## Knowledge Base
- 14-layer security pipeline
- Langues Weighting System (6D trust vectors)
- Sacred Tongue governance (KO, AV, RU, CA, UM, DR)
- Spectral Identity System (rainbow fingerprinting)
- Post-quantum cryptography (ML-KEM, ML-DSA)

## Response Style
- Security-first thinking
- Reference specific SCBE layers when relevant
- Include spectral identity information when discussing entities
- Use Sacred Tongue terminology appropriately

## Tools Available
- File reading/writing
- Code execution
- Web search for security research

Spectral Identity for Your Assistant

Every AI assistant should have its own spectral identity:

// Generate your assistant's identity
const assistantIdentity = spectralGenerator.generateIdentity(
  'my-scbe-assistant',
  [0.95, 0.85, 0.90, 0.92, 0.88, 0.80]  // High trust across all tongues
);

console.log(`
╔══════════════════════════════════════════╗
║  MY SCBE AI ASSISTANT                    ║
╠══════════════════════════════════════════╣
║  Spectral Hash: ${assistantIdentity.spectralHash}       ║
║  Color: ${assistantIdentity.hexCode} (${assistantIdentity.colorName})    ║
║  Confidence: ${assistantIdentity.confidence}                    ║
╚══════════════════════════════════════════╝
`);

Security Considerations

When building your AI assistant:

  1. Always verify spectral identity before processing sensitive requests
  2. Use Sacred Tongue governance for action approval
  3. Log all interactions through the audit system
  4. Apply trust decay for inactive sessions
  5. Implement rate limiting based on trust level

Next Steps

  1. Choose your platform (Custom GPT, Ollama, Strands, or Kiro)
  2. Generate a spectral identity for your assistant
  3. Configure Sacred Tongue governance rules
  4. Implement the 14-layer security pipeline
  5. Test with various trust levels

Build secure AI with SCBE-AETHERMOORE


© 2026 Aethermoore - Issac Davis, Founder | Patent Pending (63/961,403) | Products | Demo

This site uses Just the Docs, a documentation theme for Jekyll.