SCBE-AETHERMOORE: Future Work & Non-Implemented Ideas

Status: Roadmap Document
Last Updated: January 17, 2026
Patent: USPTO #63/961,403 (Provisional)


Current Implementation Status

Implemented (v0.1.0-alpha)

  • 6-Gate Harmonic Verification (spiralverse_sdk.py)
  • Harmonic Scaling Law (harmonic_scaling_law.py)
  • Langues Weighting System (docs/LANGUES_WEIGHTING_SYSTEM.md)
  • Basic Poincare ball geometry
  • Kyber/Dilithium placeholders
  • Guitar string metaphor for verification

Not Yet Implemented

  • Full 13-layer stack
  • PHDM (Polyhedral Hamiltonian Defense Manifold)
  • Quasicrystal verification (6D->3D projection)
  • Multi-well realm dynamics
  • Actual PQC integration (real Kyber/Dilithium)
  • CUDA/GPU acceleration
  • Sonification engine

1. PHDM - Polyhedral Hamiltonian Defense Manifold

Priority: HIGH
Complexity: HARD
Patent Claim: 61, 62

Concept

16-vertex polyhedron where control-flow must traverse Hamiltonian paths. Any deviation triggers immediate detection.

Mathematical Foundation

H_PHDM = sum_{i,j} J_ij * sigma_i * sigma_j + sum_i h_i * sigma_i

Where:

  • J_ij = coupling between vertices i,j
  • sigma_i = spin state at vertex i
  • h_i = external field (threat load)

Implementation Notes

  • Graph structure: 16 vertices, 24 edges (4-regular)
  • Hamiltonian path enumeration: O(n!) but precomputable
  • Runtime check: O(1) via lookup table
  • Attack detection: path deviation = instant reject

TODO

class PHDM:
    def __init__(self, vertices=16):
        self.graph = self._build_polyhedron(vertices)
        self.valid_paths = self._enumerate_hamiltonian_paths()

    def verify_path(self, execution_trace):
        return execution_trace in self.valid_paths

2. Quasicrystal Verification (6D->3D Projection)

Priority: HIGH
Complexity: MEDIUM
Patent Claim: 16

Concept

Cryptographic states exist in 6D quasicrystal lattice. Authentication requires valid projection to 3D via cut-and-project method with icosahedral symmetry.

Mathematical Foundation

Projection: pi: R^6 -> R^3
pi(x) = P * x where P is 3x6 projection matrix

Icosahedral symmetry group: I_h (order 120)
Valid states: pi(x) in Penrose tiling vertices

Cut-and-Project Parameters

  • Parallel space: E_parallel (3D physical)
  • Perpendicular space: E_perp (3D internal)
  • Window function: W(x_perp) for valid projections

TODO

def quasicrystal_verify(state_6d, window_radius=0.5):
    x_parallel = projection_matrix @ state_6d[:3]
    x_perp = projection_matrix @ state_6d[3:]
    return np.linalg.norm(x_perp) < window_radius

3. Multi-Well Realm Dynamics

Priority: MEDIUM
Complexity: MEDIUM
Layer: 9

Concept

Authentication landscape as potential energy surface with multiple wells (realms). Each realm = different trust/permission level.

Potential Function

V(x) = sum_r A_r * exp(-||x - x_r||^2 / (2*sigma_r^2)) + alpha_L * L_f(x,t)

Where:

  • x_r = realm center
  • A_r = realm depth (trust level)
  • sigma_r = realm width
  • L_f = Langues metric (implemented)

Snap Dynamics

Snap threshold: tau_snap = V(x_boundary) - V(x_current)
If tau_snap < epsilon: transition allowed
Else: remain in current realm

TODO

  • Implement realm graph topology
  • Add transition rate calculations
  • Connect to Langues metric for cost

4. Time Dilation Under Threat

Priority: MEDIUM
Complexity: LOW
Status: Partially implemented in spiralverse_sdk.py

Full Formula

gamma = 1 / sqrt(1 - rho_E / rho_critical)

Where:
- rho_E = threat energy density
- rho_critical = 12.24 (derived from manifold curvature)
- gamma -> infinity as rho_E -> rho_critical (verification halt)

Adaptive Delay

delay_effective = delay_base * gamma
If gamma > gamma_max: REJECT (system overloaded)

TODO

  • Integrate with real threat detection
  • Add gamma monitoring/logging
  • Implement graceful degradation

5. Full PQC Integration

Priority: HIGH
Complexity: MEDIUM
Timeline: Q2 2026

Current State

Placeholder functions for Kyber and Dilithium.

Target Integration

# Replace placeholders with:
from pqcrypto.kem import kyber768
from pqcrypto.sign import dilithium3

def real_kyber_encapsulate(public_key):
    ciphertext, shared_secret = kyber768.encapsulate(public_key)
    return ciphertext, shared_secret

def real_dilithium_sign(private_key, message):
    signature = dilithium3.sign(private_key, message)
    return signature

Dependencies

  • liboqs or pqcrypto Python bindings
  • NIST ML-KEM-768, ML-DSA-65 compliance

6. CUDA/GPU Acceleration

Priority: MEDIUM
Complexity: HARD
Timeline: Q2-Q3 2026

Target Operations

  1. Batch Langues metric computation
  2. Hyperbolic distance calculations
  3. Quasicrystal projections
  4. PHDM path verification

Approach

# PyTorch-based GPU acceleration
import torch

def langues_metric_gpu(x, mu, w, beta, omega, phi, t, nu=None):
    x = torch.tensor(x, device='cuda')
    mu = torch.tensor(mu, device='cuda')
    d = torch.abs(x - mu)
    s = d + torch.sin(omega*t + phi)
    nu = torch.ones_like(w) if nu is None else nu
    return torch.sum(nu * w * torch.exp(beta * s)).item()

PTX Instrumentation (Roadmap)

  • Kernel-level CFI via PTX rewriting
  • Custom CUDA compiler pass
  • xAI pilot feedback required

7. Sonification Engine

Priority: LOW
Complexity: MEDIUM
Novelty: HIGH

Concept

Real-time audio feedback for verification state. “Security that sounds good.”

Frequency Mapping (Guitar Strings)

Gate Frequency Note
Origin 82.41 Hz E2
Intent 110.00 Hz A2
Trajectory 146.83 Hz D3
AAD 196.00 Hz G3
Master 246.94 Hz B3
Signature 329.63 Hz E4

Audio Synthesis

import numpy as np
import sounddevice as sd

def play_verification_chord(gate_status):
    frequencies = [82.41, 110, 146.83, 196, 246.94, 329.63]
    duration = 0.5
    sample_rate = 44100
    t = np.linspace(0, duration, int(sample_rate * duration))

    signal = np.zeros_like(t)
    for i, (freq, status) in enumerate(zip(frequencies, gate_status)):
        if status == 'resonant':
            signal += np.sin(2 * np.pi * freq * t) * 0.2
        elif status == 'dissonant':
            signal += np.sin(2 * np.pi * freq * 1.05 * t) * 0.1  # Detuned

    sd.play(signal, sample_rate)

8. Langlands-L-function Formalization

Priority: RESEARCH
Complexity: VERY HARD
Status: Theoretical (Grok collaboration)

Concept

Express coherence score as proper L-function for provable security bounds.

Target Formula

L(s, pi) = sum_{n=1}^inf a_n / n^s = prod_p (1 - a_p/p^s + a_{p^2}/p^{2s} - ...)^{-1}

Security Implications

  • GRH bounds -> transference >= 2^188.9
  • Quantum resistance via hyperbolic mixing times
  • Thurston norm -> SVP hardness

TODO

  • Formalize automorphic coefficient mapping
  • Prove functional equation
  • Connect to verification trajectory

9. Additional Future Ideas

9.1 Entropy-Driven Flux

Modulate dimensional breathing based on system entropy:

sigma_l = sigma_base * (1 + entropy_factor * H(x))

9.2 Quantum Coherence Coupling

Phase alignment with quantum state:

phi_l(t) = phi_l + theta * nu_l * <psi|sigma_z|psi>

9.3 Federated Verification

Distributed SCBE across multiple nodes with consensus.

9.4 Hardware Security Module (HSM) Integration

Secure enclave for key material.

9.5 Formal Verification

Coq/Lean proofs for core algorithms.

9.6 WebAssembly Port

Browser-based SCBE for web applications.

9.7 Rust Rewrite

Memory-safe implementation for production.


10. Research Questions

  1. Optimal polyhedron geometry for PHDM?
    • 16 vertices standard, but 24/48/120 vertex variants?
  2. Quasicrystal window function shape?
    • Sphere vs. rhombic triacontahedron?
  3. L-function conductor scaling?
    • How does manifold volume relate to security parameter?
  4. Dimensional breathing frequency?
    • Optimal Omega_l for security vs. performance?
  5. Realm transition rates?
    • Arrhenius vs. Kramers escape dynamics?

Contributing

Interested in implementing any of these features? See PILOT_PROGRAM_TERMS.md for collaboration details.

Contact: issdandavis7795@gmail.com


“The future is a hyperbolic manifold - infinite possibilities, finite paths.”


© 2026 Aethermoore - Issac Davis, Founder | Patent Pending (63/961,403) | Products | Demo

This site uses Just the Docs, a documentation theme for Jekyll.