SCBE-AETHERMOORE: Future Work & Non-Implemented Ideas
Status: Roadmap Document
Last Updated: January 17, 2026
Patent: USPTO #63/961,403 (Provisional)
Current Implementation Status
Implemented (v0.1.0-alpha)
- 6-Gate Harmonic Verification (spiralverse_sdk.py)
- Harmonic Scaling Law (harmonic_scaling_law.py)
- Langues Weighting System (docs/LANGUES_WEIGHTING_SYSTEM.md)
- Basic Poincare ball geometry
- Kyber/Dilithium placeholders
- Guitar string metaphor for verification
Not Yet Implemented
- Full 13-layer stack
- PHDM (Polyhedral Hamiltonian Defense Manifold)
- Quasicrystal verification (6D->3D projection)
- Multi-well realm dynamics
- Actual PQC integration (real Kyber/Dilithium)
- CUDA/GPU acceleration
- Sonification engine
1. PHDM - Polyhedral Hamiltonian Defense Manifold
Priority: HIGH
Complexity: HARD
Patent Claim: 61, 62
Concept
16-vertex polyhedron where control-flow must traverse Hamiltonian paths. Any deviation triggers immediate detection.
Mathematical Foundation
H_PHDM = sum_{i,j} J_ij * sigma_i * sigma_j + sum_i h_i * sigma_i
Where:
- J_ij = coupling between vertices i,j
- sigma_i = spin state at vertex i
- h_i = external field (threat load)
Implementation Notes
- Graph structure: 16 vertices, 24 edges (4-regular)
- Hamiltonian path enumeration: O(n!) but precomputable
- Runtime check: O(1) via lookup table
- Attack detection: path deviation = instant reject
TODO
class PHDM:
def __init__(self, vertices=16):
self.graph = self._build_polyhedron(vertices)
self.valid_paths = self._enumerate_hamiltonian_paths()
def verify_path(self, execution_trace):
return execution_trace in self.valid_paths
2. Quasicrystal Verification (6D->3D Projection)
Priority: HIGH
Complexity: MEDIUM
Patent Claim: 16
Concept
Cryptographic states exist in 6D quasicrystal lattice. Authentication requires valid projection to 3D via cut-and-project method with icosahedral symmetry.
Mathematical Foundation
Projection: pi: R^6 -> R^3
pi(x) = P * x where P is 3x6 projection matrix
Icosahedral symmetry group: I_h (order 120)
Valid states: pi(x) in Penrose tiling vertices
Cut-and-Project Parameters
- Parallel space: E_parallel (3D physical)
- Perpendicular space: E_perp (3D internal)
- Window function: W(x_perp) for valid projections
TODO
def quasicrystal_verify(state_6d, window_radius=0.5):
x_parallel = projection_matrix @ state_6d[:3]
x_perp = projection_matrix @ state_6d[3:]
return np.linalg.norm(x_perp) < window_radius
3. Multi-Well Realm Dynamics
Priority: MEDIUM
Complexity: MEDIUM
Layer: 9
Concept
Authentication landscape as potential energy surface with multiple wells (realms). Each realm = different trust/permission level.
Potential Function
V(x) = sum_r A_r * exp(-||x - x_r||^2 / (2*sigma_r^2)) + alpha_L * L_f(x,t)
Where:
- x_r = realm center
- A_r = realm depth (trust level)
- sigma_r = realm width
- L_f = Langues metric (implemented)
Snap Dynamics
Snap threshold: tau_snap = V(x_boundary) - V(x_current)
If tau_snap < epsilon: transition allowed
Else: remain in current realm
TODO
- Implement realm graph topology
- Add transition rate calculations
- Connect to Langues metric for cost
4. Time Dilation Under Threat
Priority: MEDIUM
Complexity: LOW
Status: Partially implemented in spiralverse_sdk.py
Full Formula
gamma = 1 / sqrt(1 - rho_E / rho_critical)
Where:
- rho_E = threat energy density
- rho_critical = 12.24 (derived from manifold curvature)
- gamma -> infinity as rho_E -> rho_critical (verification halt)
Adaptive Delay
delay_effective = delay_base * gamma
If gamma > gamma_max: REJECT (system overloaded)
TODO
- Integrate with real threat detection
- Add gamma monitoring/logging
- Implement graceful degradation
5. Full PQC Integration
Priority: HIGH
Complexity: MEDIUM
Timeline: Q2 2026
Current State
Placeholder functions for Kyber and Dilithium.
Target Integration
# Replace placeholders with:
from pqcrypto.kem import kyber768
from pqcrypto.sign import dilithium3
def real_kyber_encapsulate(public_key):
ciphertext, shared_secret = kyber768.encapsulate(public_key)
return ciphertext, shared_secret
def real_dilithium_sign(private_key, message):
signature = dilithium3.sign(private_key, message)
return signature
Dependencies
- liboqs or pqcrypto Python bindings
- NIST ML-KEM-768, ML-DSA-65 compliance
6. CUDA/GPU Acceleration
Priority: MEDIUM
Complexity: HARD
Timeline: Q2-Q3 2026
Target Operations
- Batch Langues metric computation
- Hyperbolic distance calculations
- Quasicrystal projections
- PHDM path verification
Approach
# PyTorch-based GPU acceleration
import torch
def langues_metric_gpu(x, mu, w, beta, omega, phi, t, nu=None):
x = torch.tensor(x, device='cuda')
mu = torch.tensor(mu, device='cuda')
d = torch.abs(x - mu)
s = d + torch.sin(omega*t + phi)
nu = torch.ones_like(w) if nu is None else nu
return torch.sum(nu * w * torch.exp(beta * s)).item()
PTX Instrumentation (Roadmap)
- Kernel-level CFI via PTX rewriting
- Custom CUDA compiler pass
- xAI pilot feedback required
7. Sonification Engine
Priority: LOW
Complexity: MEDIUM
Novelty: HIGH
Concept
Real-time audio feedback for verification state. “Security that sounds good.”
Frequency Mapping (Guitar Strings)
| Gate | Frequency | Note |
|---|---|---|
| Origin | 82.41 Hz | E2 |
| Intent | 110.00 Hz | A2 |
| Trajectory | 146.83 Hz | D3 |
| AAD | 196.00 Hz | G3 |
| Master | 246.94 Hz | B3 |
| Signature | 329.63 Hz | E4 |
Audio Synthesis
import numpy as np
import sounddevice as sd
def play_verification_chord(gate_status):
frequencies = [82.41, 110, 146.83, 196, 246.94, 329.63]
duration = 0.5
sample_rate = 44100
t = np.linspace(0, duration, int(sample_rate * duration))
signal = np.zeros_like(t)
for i, (freq, status) in enumerate(zip(frequencies, gate_status)):
if status == 'resonant':
signal += np.sin(2 * np.pi * freq * t) * 0.2
elif status == 'dissonant':
signal += np.sin(2 * np.pi * freq * 1.05 * t) * 0.1 # Detuned
sd.play(signal, sample_rate)
8. Langlands-L-function Formalization
Priority: RESEARCH
Complexity: VERY HARD
Status: Theoretical (Grok collaboration)
Concept
Express coherence score as proper L-function for provable security bounds.
Target Formula
L(s, pi) = sum_{n=1}^inf a_n / n^s = prod_p (1 - a_p/p^s + a_{p^2}/p^{2s} - ...)^{-1}
Security Implications
- GRH bounds -> transference >= 2^188.9
- Quantum resistance via hyperbolic mixing times
- Thurston norm -> SVP hardness
TODO
- Formalize automorphic coefficient mapping
- Prove functional equation
- Connect to verification trajectory
9. Additional Future Ideas
9.1 Entropy-Driven Flux
Modulate dimensional breathing based on system entropy:
sigma_l = sigma_base * (1 + entropy_factor * H(x))
9.2 Quantum Coherence Coupling
Phase alignment with quantum state:
phi_l(t) = phi_l + theta * nu_l * <psi|sigma_z|psi>
9.3 Federated Verification
Distributed SCBE across multiple nodes with consensus.
9.4 Hardware Security Module (HSM) Integration
Secure enclave for key material.
9.5 Formal Verification
Coq/Lean proofs for core algorithms.
9.6 WebAssembly Port
Browser-based SCBE for web applications.
9.7 Rust Rewrite
Memory-safe implementation for production.
10. Research Questions
- Optimal polyhedron geometry for PHDM?
- 16 vertices standard, but 24/48/120 vertex variants?
- Quasicrystal window function shape?
- Sphere vs. rhombic triacontahedron?
- L-function conductor scaling?
- How does manifold volume relate to security parameter?
- Dimensional breathing frequency?
- Optimal Omega_l for security vs. performance?
- Realm transition rates?
- Arrhenius vs. Kramers escape dynamics?
Contributing
Interested in implementing any of these features? See PILOT_PROGRAM_TERMS.md for collaboration details.
Contact: issdandavis7795@gmail.com
“The future is a hyperbolic manifold - infinite possibilities, finite paths.”