SCBE-AETHERMOORE System CLI Guide
This CLI is the operational control point for the production system tools that were added for self-improvement, notion/pipeline drift review, web intelligence, and lightweight antivirus checks.
Entry Point
python scripts/scbe-system-cli.py --repo-root C:/Users/issda/SCBE-AETHERMOORE-working <command> [args]
--repo-root defaults to the current checkout and can usually be omitted.
Commands
tongues ...
Pass-through to six-tongues-cli.py (tokenizer + GeoSeal toolkit).
python scripts/scbe-system-cli.py tongues encode --tongue KO --in input.bin
python scripts/scbe-system-cli.py tongues decode --tongue KO --in <(printf "tok1 tok2 ...")
python scripts/scbe-system-cli.py tongues xlate --src KO --dst AV
python scripts/scbe-system-cli.py tongues blend --pattern KO:2,AV:1,DR:1 --in secret.txt
python scripts/scbe-system-cli.py tongues geoseal-encrypt --context "[0.2,-0.3,0.7]" --kem-key <base64> --dsa-key <base64> --in payload.bin
python scripts/scbe-system-cli.py tongues selftest
This command gives you the “core protocol CLI” from your technical spec.
notion-gap
Run the Notion/pipeline gap audit used in the self-improvement loop.
python scripts/scbe-system-cli.py notion-gap \
--sync-config scripts/sync-config.json \
--pipeline-config training/vertex_pipeline_config.yaml \
--training-data training-data
Outputs:
artifacts/notion_pipeline_gap_review.jsonartifacts/notion_pipeline_gap_review.md
self-improve
Run mode-based task synthesis from coherence/gap artifacts.
python scripts/scbe-system-cli.py self-improve --mode all
python scripts/scbe-system-cli.py self-improve --mode fine-tune-funnel --run-gap
If --run-gap is passed, this command executes the gap review first and then runs the orchestrator with that report.
Outputs:
artifacts/self_improvement_manifest.jsonartifacts/self_improvement_summary.md
web search and web capture
python scripts/scbe-system-cli.py web --engine auto search --query "SICA self-improving coding agent arxiv"
python scripts/scbe-system-cli.py web --engine auto capture --url "https://duckduckgo.com"
Outputs are written under artifacts/web_tool.
antivirus
Run quick static safety scan for high-signal issues.
python scripts/scbe-system-cli.py antivirus
Outputs:
artifacts/agentic_antivirus_report.jsonartifacts/agentic_antivirus_report.md
status
Quick artifact presence check:
python scripts/scbe-system-cli.py status
pollypad (Agent personal “Kindle” storage)
Create and manage per-agent personal pads for notes, books, and utilities.
# Create a pad for one agent
python scripts/scbe-system-cli.py pollypad init --agent-id agent-001 --name "Rex Codex" --role CODER --owner "Isaac"
# Add notes and list them
python scripts/scbe-system-cli.py pollypad note add --agent-id agent-001 --title "Mission Notes" --text "Start from trust radius checks first."
python scripts/scbe-system-cli.py pollypad note list --agent-id agent-001
# Add a book file into the pad
python scripts/scbe-system-cli.py pollypad book add --agent-id agent-001 --title "Operations" --path "./notes/ops.md"
# Install and list agent apps/utilities
python scripts/scbe-system-cli.py pollypad app install --agent-id agent-001 --name "scbe-checker" --entrypoint "python scbe.py check" --description "Local validation utility"
python scripts/scbe-system-cli.py pollypad app list --agent-id agent-001
# Export a snapshot for handoff/sync
python scripts/scbe-system-cli.py pollypad snapshot --agent-id agent-001
Pads are stored under .scbe/polly-pads/<agent-id>/:
manifest.jsonnotes/books/apps/
agent (Squad Orchestration)
Create and use a small AI squad from the CLI. This is the “call my agents like Codex” path.
# Bootstrap default squad (Codex + NotebookLM)
python scripts/scbe-system-cli.py agent bootstrap
# Register a custom OpenAI agent
python scripts/scbe-system-cli.py agent register \
--agent-id code-reviewer \
--provider openai \
--display-name "Code Reviewer" \
--description "Specialized for PR review" \
--model gpt-4o-mini \
--api-key-env OPENAI_API_KEY
# List squad members
python scripts/scbe-system-cli.py agent list
# Quick ping everyone in registry
python scripts/scbe-system-cli.py agent ping --max-tokens 64
# Run one agent with prompt text
python scripts/scbe-system-cli.py agent call \
--agent-id codex \
--prompt "Give a 3-step plan to harden an API endpoint against replay risk."
# Broadcast to all enabled agents and save artifacts
python scripts/scbe-system-cli.py agent call --all --show-output --output-dir artifacts/agent_calls
Agent calls are stored in artifacts/agent_calls/:
codex_agent_call.jsonnotebooklm-main_agent_call.json(manual fallback artifact)agent_call_summary.json
Notes:
agent bootstrap --appendkeeps existing entries and adds defaults.agent bootstrap --forcereplaces current registry.agent registersupportsopenaiandnotebooklmprovider entries.
Mapping to Your Notes + Workflow
- The
notion-gap+self-improvepath is the implementation of your notion-to-pipeline gap triage. tonguesis the concrete CLI for the Six Tongues + GeoSeal spec.webandantivirusprovide the agentic tool layer for environment-scope automation and safety triage.statusaligns with the.scbe/next-coder-marker.mdhandoff flow.pollypadaligns with your “Kindle for AI” concept (agent-local note/books/app bundle with manifest).
Suggested Daily Run Sequence
statusself-improve --run-gaptongues selftestweb search --query "<topic>"(as needed)antiviruspollypad listpollypad snapshot --agent-id <id>
If any CRITICAL/HIGH items remain, pause release actions and fix before scheduling deployment workflows.