Phase-Coupled Dimensionality Collapse (PCDC)
Part of SCBE-AETHERMOORE v3.0.0
Patent: USPTO #63/961,403
Date: January 18, 2026
Status: Novel Mathematical Construction
0. Motivation
The SCBE system uses 6-dimensional context vectors, but not all dimensions are equally “active” at all times. The “demi/quasi/polly” breathing concept suggests dimensionality should adapt based on system state. PCDC formalizes this as a continuous, phase-derived dimensionality reduction that makes authorization decisions tighten automatically when dimensions drift.
1. Domain
Input: Complex-valued context vector c(t) ∈ ℂ^D where:
D = 6(KO, AV, RU, CA, UM, DR dimensions)- Each
c_i(t)has magnitude and phase:c_i(t) = |c_i(t)| · e^(i·φ_i(t)) - Time series available:
{c(t-Δ), c(t-2Δ), ..., c(t-NΔ)}
Parameters:
Δ: Time window for phase coherence measurement (default: 1 second)N: Number of historical samples (default: 10)τ: Coherence threshold for dimension activation (default: 0.7)
2. Operator
2.1 Phase Coherence (Per-Dimension)
For each dimension i ∈ {1,...,D}, compute phase coherence over time window:
ρ_i(t) = |𝔼_Δ[e^(i·Δφ_i(t,Δ))]|
where:
Δφ_i(t,Δ) = arg(c_i(t)) - arg(c_i(t-Δ))
In English:
- If phase is stable (small Δφ), then
e^(i·Δφ) ≈ 1→ρ_i ≈ 1 - If phase drifts randomly, then
e^(i·Δφ)averages to 0 →ρ_i ≈ 0
Discrete Implementation:
ρ_i(t) = (1/N) · |Σ_{k=1}^N e^(i·Δφ_i(t-kΔ,Δ))|
2.2 Collapse Operator
Define the collapse operator that attenuates incoherent dimensions:
Π_ρ(c)_i = ρ_i · c_i
Result: c' = Π_ρ(c) where incoherent dimensions are suppressed.
2.3 Effective Dimensionality
Define two measures of effective dimensionality:
Hard threshold:
D_eff^hard(t) = Σ_{i=1}^D 𝟙[ρ_i(t) > τ]
Soft (continuous):
D_eff^soft(t) = Σ_{i=1}^D ρ_i(t)
Interpretation:
D_eff = 6: All dimensions coherent (polly mode)D_eff ≈ 3: Half dimensions drifting (demi mode)D_eff < 2: Severe drift (quasi mode, high alert)
3. Invariant
Phase Coherence Preservation:
For a stable system with no external perturbations:
d/dt ρ_i(t) ≈ 0 (for all i)
Proof Sketch: If φ_i(t) = ω_i·t + φ_0 (constant angular velocity), then:
Δφ_i(t,Δ) = ω_i·Δ (constant)
e^(i·Δφ_i) = e^(i·ω_i·Δ) (constant)
ρ_i = |e^(i·ω_i·Δ)| = 1
Corollary: Coherence drops only when phase velocity changes (drift/attack).
4. Metric
Define the dimensionality collapse metric:
M_collapse(t) = D - D_eff^soft(t) = Σ_{i=1}^D (1 - ρ_i(t))
Interpretation:
M_collapse = 0: No collapse (all dimensions active)M_collapse = D: Complete collapse (all dimensions incoherent)
Optimization Goal: Minimize M_collapse for trusted nodes, maximize for attackers.
5. Theorem
Theorem 1 (Drift Detection):
Let c(t) be a context vector with phase drift σ_φ (standard deviation of phase velocity). Then:
𝔼[ρ_i] ≤ e^(-σ_φ²·Δ²/2)
Proof:
Assume phase increments are Gaussian: Δφ ~ 𝒩(0, σ_φ²·Δ²).
Then:
𝔼[e^(i·Δφ)] = ∫ e^(i·x) · (1/√(2πσ²)) · e^(-x²/(2σ²)) dx
= e^(-σ²/2) (characteristic function of Gaussian)
where σ² = σ_φ²·Δ².
Therefore:
ρ_i = |𝔼[e^(i·Δφ)]| ≤ e^(-σ_φ²·Δ²/2)
Corollary: High drift (large σ_φ) → low coherence (small ρ_i) → dimension collapses.
6. Integration with SCBE
6.1 Layer 3 (Langues Metric Tensor)
Current formula:
L(x,t) = Σ_{l=1}^6 w_l · exp[β_l · (d_l + sin(ω_l·t + φ_l))]
PCDC Enhancement:
L_PCDC(x,t) = Σ_{l=1}^6 ρ_l(t) · w_l · exp[β_l · (d_l + sin(ω_l·t + φ_l))]
Effect: Incoherent dimensions contribute less to trust score.
6.2 Dimensional Breathing Modes
Map D_eff to breathing modes:
mode(t) = {
'polly' if D_eff(t) > 5.5
'demi' if 3.0 ≤ D_eff(t) ≤ 5.5
'quasi' if D_eff(t) < 3.0
}
Flux Coefficients:
flux_polly = 1.0 (all dimensions active)
flux_demi = 0.5 (half dimensions active)
flux_quasi = 0.1 (minimal dimensions active)
6.3 Authorization Tightening
Decision Rule:
threshold(t) = base_threshold · (D / D_eff(t))
Effect: As D_eff drops, threshold increases → harder to pass authorization.
7. Implementation
7.1 TypeScript Types
interface PhaseCoherence {
rho: number[]; // Per-dimension coherence [0,1]
D_eff_hard: number; // Hard threshold count
D_eff_soft: number; // Soft continuous sum
M_collapse: number; // Collapse metric
mode: 'polly' | 'demi' | 'quasi';
}
interface PCDCConfig {
D: number; // Number of dimensions (6)
Delta: number; // Time window (seconds)
N: number; // Historical samples
tau: number; // Coherence threshold
}
7.2 Core Algorithm
class PCDC {
private config: PCDCConfig;
private history: Complex[][]; // [time][dimension]
constructor(config: PCDCConfig) {
this.config = config;
this.history = [];
}
/**
* Update with new context vector
*/
update(c: Complex[]): void {
this.history.push([...c]);
if (this.history.length > this.config.N) {
this.history.shift();
}
}
/**
* Compute phase coherence for dimension i
*/
computeCoherence(i: number): number {
if (this.history.length < 2) return 1.0;
let sum_real = 0;
let sum_imag = 0;
let count = 0;
for (let k = 1; k < this.history.length; k++) {
const phi_curr = this.history[k][i].arg();
const phi_prev = this.history[k - 1][i].arg();
const delta_phi = phi_curr - phi_prev;
sum_real += Math.cos(delta_phi);
sum_imag += Math.sin(delta_phi);
count++;
}
const avg_real = sum_real / count;
const avg_imag = sum_imag / count;
return Math.sqrt(avg_real * avg_real + avg_imag * avg_imag);
}
/**
* Compute full phase coherence state
*/
computeState(): PhaseCoherence {
const rho: number[] = [];
let D_eff_hard = 0;
let D_eff_soft = 0;
for (let i = 0; i < this.config.D; i++) {
const rho_i = this.computeCoherence(i);
rho.push(rho_i);
if (rho_i > this.config.tau) {
D_eff_hard++;
}
D_eff_soft += rho_i;
}
const M_collapse = this.config.D - D_eff_soft;
let mode: 'polly' | 'demi' | 'quasi';
if (D_eff_soft > 5.5) {
mode = 'polly';
} else if (D_eff_soft >= 3.0) {
mode = 'demi';
} else {
mode = 'quasi';
}
return {
rho,
D_eff_hard,
D_eff_soft,
M_collapse,
mode,
};
}
/**
* Apply collapse operator
*/
collapse(c: Complex[]): Complex[] {
const state = this.computeState();
return c.map((c_i, i) => c_i.multiply(state.rho[i]));
}
}
8. Test Suite
8.1 Invariant Tests
describe('PCDC Invariants', () => {
it('coherence is in [0,1]', () => {
const pcdc = new PCDC({ D: 6, Delta: 1, N: 10, tau: 0.7 });
// Add stable phases
for (let t = 0; t < 20; t++) {
const c = Array.from({ length: 6 }, (_, i) => Complex.fromPolar(1, i * 0.1 * t));
pcdc.update(c);
}
const state = pcdc.computeState();
state.rho.forEach((rho_i) => {
expect(rho_i).toBeGreaterThanOrEqual(0);
expect(rho_i).toBeLessThanOrEqual(1);
});
});
it('stable phases → high coherence', () => {
const pcdc = new PCDC({ D: 6, Delta: 1, N: 10, tau: 0.7 });
// Constant phase velocity
for (let t = 0; t < 20; t++) {
const c = Array.from(
{ length: 6 },
(_, i) => Complex.fromPolar(1, 0.5 * t) // Same velocity for all
);
pcdc.update(c);
}
const state = pcdc.computeState();
expect(state.D_eff_soft).toBeGreaterThan(5.5);
expect(state.mode).toBe('polly');
});
it('drifting phases → low coherence', () => {
const pcdc = new PCDC({ D: 6, Delta: 1, N: 10, tau: 0.7 });
// Random phase drift
for (let t = 0; t < 20; t++) {
const c = Array.from({ length: 6 }, () => Complex.fromPolar(1, Math.random() * 2 * Math.PI));
pcdc.update(c);
}
const state = pcdc.computeState();
expect(state.D_eff_soft).toBeLessThan(3.0);
expect(state.mode).toBe('quasi');
});
it('collapse operator preserves magnitude scaling', () => {
const pcdc = new PCDC({ D: 6, Delta: 1, N: 10, tau: 0.7 });
// Add some history
for (let t = 0; t < 10; t++) {
pcdc.update(
Array.from({ length: 6 }, () => Complex.fromPolar(1, Math.random() * 2 * Math.PI))
);
}
const c = Array.from({ length: 6 }, () => Complex.fromPolar(2, 0));
const c_collapsed = pcdc.collapse(c);
// Collapsed magnitudes should be ≤ original
c_collapsed.forEach((c_i, i) => {
expect(c_i.abs()).toBeLessThanOrEqual(c[i].abs());
});
});
});
8.2 Drift Detection Test
it('detects drift according to theorem', () => {
const pcdc = new PCDC({ D: 6, Delta: 1, N: 10, tau: 0.7 });
// Simulate Gaussian drift with σ_φ = 0.5
const sigma_phi = 0.5;
const Delta = 1;
for (let t = 0; t < 20; t++) {
const c = Array.from({ length: 6 }, () => {
const drift = sigma_phi * Math.sqrt(Delta) * randn();
return Complex.fromPolar(1, drift);
});
pcdc.update(c);
}
const state = pcdc.computeState();
const expected_rho = Math.exp((-sigma_phi * sigma_phi * Delta * Delta) / 2);
// Average coherence should be close to theoretical bound
const avg_rho = state.D_eff_soft / 6;
expect(avg_rho).toBeLessThan(expected_rho * 1.5); // Allow some slack
});
9. Patent Claims
Claim 1: Phase-Coupled Dimensionality Collapse Method
“A method for adaptive dimensionality reduction comprising: (a) receiving complex-valued context vector c(t) ∈ ℂ^D; (b) computing per-dimension phase coherence ρi(t) = |𝔼[e^(i·Δφ_i)]|; (c) defining collapse operator Πρ(c)_i = ρ_i · c_i; (d) computing effective dimensionality D_eff = Σ ρ_i; (e) adjusting authorization threshold based on D_eff; wherein incoherent dimensions are automatically suppressed.”
Claim 2: Breathing Mode Classification
“The method of claim 1, wherein dimensional modes are classified as:
- polly mode if D_eff > 5.5 (all dimensions active);
- demi mode if 3.0 ≤ D_eff ≤ 5.5 (partial activation);
- quasi mode if D_eff < 3.0 (minimal activation).”
Claim 3: Drift Detection Bound
“The method of claim 1, wherein phase coherence satisfies: ρi ≤ e^(-σφ²·Δ²/2) where σ_φ is phase drift standard deviation.”
10. Comparison to Prior Art
What’s NOT New
- Phase coherence measurement (signal processing)
- Dimensionality reduction (PCA, autoencoders)
- Adaptive thresholds (anomaly detection)
What IS New
- Phase-derived continuous dimensionality for security contexts
- Automatic dimension suppression based on temporal coherence
- Breathing modes (polly/demi/quasi) as formal mathematical states
- Integration with hyperbolic geometry (Langues Metric Tensor)
11. Future Work
- Multi-Scale Coherence: Measure ρ_i at multiple Δ values
- Cross-Dimension Coupling: Detect when dimensions drift together (coordinated attack)
- Adaptive τ: Learn optimal coherence threshold from data
- Quantum Extension: Apply to quantum state coherence
Status: ✅ MATHEMATICALLY SPECIFIED | ⏳ IMPLEMENTATION PENDING | 🔐 PATENT-READY
Generated: January 18, 2026 21:20 PST
Patent Deadline: 13 days remaining