AWS Lambda Deployment Guide
Overview
The SCBE 14-Layer Hyperbolic Governance System is fully integrated with AWS Lambda for serverless deployment. This document describes the Lambda deployment architecture and integration points.
Architecture
Lambda Handler (src/lambda/index.js)
Spiralverse Protocol - Patent Seam Demonstration
The Lambda handler implements two key patent seams:
- Manifold-Gated Dual-Lane Classifier
- Extracts geometric features (entropy, complexity, depth)
- Computes lane routing:
brain(lane 0) oroversight(lane 1) - Uses golden ratio (φ) for geometric projection
- Trajectory + Drift Coherence Kernel
- 5-variable authorization: origin, velocity, curvature, phase, signature
- Coherence threshold: 0.7
- Drift tolerance: 0.15
Python Backend Integration
SCBE 14-Layer Pipeline (src/scbe_14layer_reference.py)
- Processes complex state through hyperbolic geometry
- Returns ALLOW/QUARANTINE/DENY decisions
- Integrates with Lambda via Python subprocess or API Gateway
AetherMoore Core (src/aethermoore.py)
- Quantum-resistant AQM (Active Queue Management)
- Soliton wave dynamics for packet scheduling
- Physics-based traffic shaping
Symphonic Cipher (src/symphonic_cipher/)
- FFT-based harmonic verification
- Dual-lattice consensus (Kyber + Dilithium)
- Flat-slope encoding for covert channels
Deployment Options
Option 1: Node.js Lambda (Zero Dependencies)
// index.js exports.handler
const response = await ManifoldClassifier.classify(context);
const kernel = TrajectoryKernel.computeKernel(request);
const authorized = TrajectoryKernel.authorize(kernel);
Advantages:
- Zero npm dependencies
- <1MB deployment package
- Cold start: ~100ms
Use case: High-throughput API Gateway for manifold classification
Option 2: Python Lambda with SCBE Pipeline
# Lambda function using Python 3.14 runtime
from src.scbe_14layer_reference import scbe_14layer_pipeline
import json
def lambda_handler(event, context):
# Extract features from API Gateway event
body = json.loads(event['body'])
# Run SCBE pipeline
result = scbe_14layer_pipeline(
t=body['features'],
D=6,
breathing_factor=body.get('breathing', 1.0)
)
return {
'statusCode': 200,
'body': json.dumps({
'decision': result['decision'],
'risk': result['risk_prime'],
'distance': result['d_star']
})
}
Dependencies (requirements.txt):
numpy>=1.20.0
scipy>=1.7.0
Deployment package size: ~50MB (with numpy/scipy) Cold start: ~2-3 seconds Warm execution: 50-100ms
Option 3: Hybrid Lambda + Step Functions
StateMachine:
StartAt: ManifoldClassification
States:
ManifoldClassification:
Type: Task
Resource: arn:aws:lambda:us-east-1:123456789:function:scbe-manifold
Next: LaneRouter
LaneRouter:
Type: Choice
Choices:
- Variable: $.lane
StringEquals: brain
Next: SCBEPipeline
- Variable: $.lane
StringEquals: oversight
Next: HumanReview
SCBEPipeline:
Type: Task
Resource: arn:aws:lambda:us-east-1:123456789:function:scbe-14layer
Next: DecisionGate
DecisionGate:
Type: Choice
Choices:
- Variable: $.decision
StringEquals: ALLOW
Next: SuccessState
- Variable: $.decision
StringEquals: QUARANTINE
Next: QuarantineState
- Variable: $.decision
StringEquals: DENY
Next: DenyState
Deployment Steps
1. Package Python Lambda
cd /c/Users/issda/Downloads/SCBE_Production_Pack
# Create deployment package
mkdir -p lambda_package
pip install -r requirements.txt -t lambda_package/
cp src/scbe_14layer_reference.py lambda_package/
cp src/aethermoore.py lambda_package/
cp -r src/symphonic_cipher lambda_package/
# Create ZIP
cd lambda_package
zip -r ../scbe-lambda.zip .
cd ..
2. Deploy to AWS Lambda
# Using AWS CLI
aws lambda create-function \
--function-name scbe-14layer-governance \
--runtime python3.14 \
--role arn:aws:iam::123456789:role/lambda-execution-role \
--handler lambda_handler.handler \
--zip-file fileb://scbe-lambda.zip \
--timeout 60 \
--memory-size 512
3. Configure API Gateway
# Create REST API
aws apigateway create-rest-api \
--name "SCBE Governance API" \
--description "14-Layer Hyperbolic Governance"
# Create resource
aws apigateway create-resource \
--rest-api-id abc123 \
--parent-id xyz789 \
--path-part "classify"
# Create POST method
aws apigateway put-method \
--rest-api-id abc123 \
--resource-id rst456 \
--http-method POST \
--authorization-type NONE
# Integrate with Lambda
aws apigateway put-integration \
--rest-api-id abc123 \
--resource-id rst456 \
--http-method POST \
--type AWS_PROXY \
--integration-http-method POST \
--uri arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/arn:aws:lambda:us-east-1:123456789:function:scbe-14layer-governance/invocations
4. Deploy API
aws apigateway create-deployment \
--rest-api-id abc123 \
--stage-name prod
Testing
Stress Test
python tests/stress_test.py
Simulates:
- 1000 concurrent requests
- Attack scenarios (DDoS, malicious packets)
- Normal traffic patterns
- Edge cases (boundary conditions)
Integration Test
# Test Lambda locally
sam local start-api
# Send test request
curl -X POST http://localhost:3000/classify \
-H "Content-Type: application/json" \
-d '{
"features": [0.8, 0.6, 0.5, 0.4, 0.3, 0.2, 0, 0.785, 1.57, 3.14, 4.71, 6.28],
"breathing": 1.0
}'
Expected response:
{
"decision": "QUARANTINE",
"risk": 0.3306,
"distance": 0.3822,
"coherence": {
"C_spin": 0.964,
"S_spec": 0.5,
"tau": 0.5,
"S_audio": 0.989
}
}
Performance Optimization
Lambda Configuration
Memory: 512 MB (optimal for numpy/scipy) Timeout: 60 seconds (worst-case for cold start) Reserved Concurrency: 100 (prevent throttling)
Provisioned Concurrency
For production traffic:
aws lambda put-provisioned-concurrency-config \
--function-name scbe-14layer-governance \
--provisioned-concurrent-executions 10 \
--qualifier prod
Benefits:
- Eliminates cold starts
- Consistent <100ms latency
- Cost: ~$20/month for 10 provisioned instances
CloudWatch Metrics
Monitor:
Invocations- Total requestsDuration- Execution timeErrors- Failed invocationsThrottles- Rate-limited requests- Custom:
DecisionDistribution(ALLOW/QUARANTINE/DENY ratio)
Security
IAM Role Permissions
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": ["logs:CreateLogGroup", "logs:CreateLogStream", "logs:PutLogEvents"],
"Resource": "arn:aws:logs:*:*:*"
},
{
"Effect": "Allow",
"Action": ["kms:Decrypt", "kms:GenerateDataKey"],
"Resource": "arn:aws:kms:us-east-1:123456789:key/*"
}
]
}
Environment Variables
aws lambda update-function-configuration \
--function-name scbe-14layer-governance \
--environment Variables="{
REALM_CENTERS=[[0.1,0.2,0.3],[0.4,0.5,0.6]],
BREATHING_FACTOR=1.0,
RISK_THRESHOLD_ALLOW=0.3,
RISK_THRESHOLD_DENY=0.6
}"
Encryption at Rest
Lambda function code and environment variables are encrypted using AWS KMS.
Cost Estimation
Assumptions:
- 1M requests/month
- 500ms average duration
- 512 MB memory
Lambda Costs:
- Requests: 1M × $0.20/1M = $0.20
- Compute: 1M × 0.5s × (512/1024) × $0.0000166667 = $4.17
- Total: ~$4.37/month
API Gateway:
- 1M requests × $3.50/1M = $3.50
Grand Total: ~$7.87/month (excluding data transfer)
Production Checklist
- Deploy Lambda function with provisioned concurrency
- Configure API Gateway with throttling (10,000 req/sec)
- Set up CloudWatch alarms for errors/throttles
- Enable X-Ray tracing for debugging
- Configure DLQ (Dead Letter Queue) for failed invocations
- Set up automated tests in CI/CD pipeline
- Enable AWS WAF for API Gateway
- Configure VPC (if accessing private resources)
- Set up CloudFront for global distribution
- Enable Lambda function versioning
Related Documentation
Deployment Status: Ready for production Last Updated: 2026-01-17 Maintainer: Issac Daniel Davis / SpiralVerse OS