Swarm Coder: AI Governance Through Geometry

One-liner: The navigation system for AI agents—the same math that coordinates drone swarms now coordinates coding agents, preventing drift into bugs, hallucinations, or policy violations.


The Problem

AI agents are blind. They can’t see:

  • The full codebase
  • What other agents are doing
  • When they’re drifting from intended behavior

Just like a drone without a camera needs sonar, GPS, and swarm awareness to avoid crashing—AI coding agents need governance, consensus, and spatial awareness to avoid errors.


The Solution: 6 Agents, 1 Geometry

┌────────────────────────────────────────────────────┐
│                  SWARM CODER                       │
│   "6 AI agents that code like a drone swarm"       │
├────────────────────────────────────────────────────┤
│                                                    │
│    ┌─────┐    ┌─────┐    ┌─────┐                  │
│    │ KO  │    │ AV  │    │ RU  │  ← Orchestrate   │
│    │Flow │    │I/O  │    │Policy│    Design/Code  │
│    └──┬──┘    └──┬──┘    └──┬──┘                  │
│       │          │          │                      │
│       └──────────┼──────────┘                      │
│                  ▼                                 │
│       ┌──────────────────┐                         │
│       │  Poincaré Ball   │  ← Shared behavior     │
│       │  (Hyperbolic     │     space where        │
│       │   geometry)      │     position = intent  │
│       └──────────────────┘                         │
│                  ▲                                 │
│       ┌──────────┼──────────┐                      │
│       │          │          │                      │
│    ┌──┴──┐    ┌──┴──┐    ┌──┴──┐                  │
│    │ CA  │    │ UM  │    │ DR  │  ← Verify        │
│    │Comp │    │Sec  │    │Auth │    Test/Review   │
│    └─────┘    └─────┘    └─────┘                  │
│                                                    │
└────────────────────────────────────────────────────┘

How It Works

1. Decimal Drift Detection

Every agent’s actions are tracked as a position in hyperbolic space. When an agent drifts from expected behavior:

Agent behavior: (0.2, 0.5, 0.1) → (0.4, 0.6, 0.3) → (0.7, 0.8, 0.5)
Policy anchor:  (0.2, 0.5, 0.1)
Distance grows: 0 → 0.2 → 0.6

System response:
├── 0.0-0.3: Interior → Normal operation
├── 0.3-0.6: Border → Increased scrutiny
└── 0.6+:    Exterior → Require approval / DENY

2. Harmonic Wall Cost

The further you drift, the exponentially harder it gets:

H(d) = exp(d²)

d = 0.0  →  H = 1.00   (free to operate)
d = 0.5  →  H = 1.28   (slight friction)
d = 1.0  →  H = 2.72   (noticeable cost)
d = 2.0  →  H = 54.6   (expensive)
d = 3.0  →  H = 8,103  (effectively blocked)

Adversarial actions cost exponentially more. No rules needed—the geometry enforces safety.

3. Byzantine Fault Tolerant Consensus

4-of-6 agents must agree. One rogue agent can’t corrupt the swarm:

Quorum: 2f + 1 = 5 (tolerates 2 failures)
Weighted by Sacred Tongue (φⁿ golden ratio)

KO votes: weight 1.00
AV votes: weight 1.62
RU votes: weight 2.62
CA votes: weight 4.24
UM votes: weight 6.85
DR votes: weight 11.09

Why This Matters

Physical Drone AI Coding Agent
Position in 3D space Position in behavior space
Physical drift Decimal drift (policy deviation)
Gravity/sonar failsafe Governance/consensus failsafe
Frequency navigation Sacred Tongue protocols
Blind without camera Blind without full context
Swarm awareness Multi-agent consensus

Same math. Same coordination. Different domain.


Technical Specs

  • 14-layer decision pipeline from input to ALLOW/DENY
  • Post-quantum safe: ML-KEM (Kyber) + ML-DSA (Dilithium)
  • Hyperbolic geometry: Poincaré ball model (curvature = -1)
  • SS1 Tokenizer: Phonetic encoding for semantic security
  • Dual-lattice: Combines semantic + computational security

Use Cases

1. AI Coding Swarm

6 agents collaborate on code. Each specializes:

  • KO: Orchestration, task flow
  • AV: Input/output, API calls
  • RU: Policy enforcement, rules
  • CA: Core computation, encryption
  • UM: Security scanning, redaction
  • DR: Authentication, schema validation

2. Space Debris Removal

Spacecraft swarm that:

  • Operates autonomously (no ground control delay)
  • Survives if one satellite fails (BFT)
  • Can’t be hijacked (PQC encryption)
  • Coordinates without central command

3. Enterprise AI Governance

Every AI action passes through governance:

POST /govern
{
  "actor": { "id": "gpt-agent", "type": "ai" },
  "resource": { "type": "contract", "value_usd": 50000 },
  "intent": "auto_approve"
}

Response:
{
  "decision": "ESCALATE",
  "rationale": "Contract value exceeds auto-approval threshold",
  "required_approvers": ["legal-team"]
}

The Stack

Layer Component Purpose
L1-4 Context Processing Normalize & embed inputs
L5 Hyperbolic Metric Distance-preserving geometry
L6-7 Breathing Transform Phase-shifted Möbius operations
L8 Trust Realms Multi-well decision spaces
L9-10 Spectral Coherence Polyhedral stability checks
L11 Temporal Distance Time-aware decisions
L12 Harmonic Wall Exponential adversarial cost
L13 Decision Gate ALLOW / DENY / ESCALATE
L14 Audio Axis Telemetry & monitoring

Status

  • Patent: Application filed (provisional)
  • Code: 995+ tests passing
  • Security: Post-quantum cryptography integrated
  • Deployment: Kubernetes manifests ready

Contact

GitHub: SCBE-AETHERMOORE


“We don’t write rules. We write geometry. The math itself prevents adversarial drift.”


© 2026 Aethermoore - Issac Davis, Founder | Patent Pending (63/961,403) | Products | Demo

This site uses Just the Docs, a documentation theme for Jekyll.