🛡️ GeoSeal: Geometric Access Control Kernel - RAG Immune System
last-synced: 2026-02-16T07:28:45.718Z
GeoSeal: Geometric Access Control Kernel
| Status: Implementation Ready | Version: 1.0.0 | Last Updated: February 10, 2026 |
Integration Layer: GeoSeal + Spiralverse RAG Enhancement
Parent Architecture: 🔬 SCBE-AETHERMOORE — Public Technical & Theory Hub
Executive Summary
GeoSeal transforms vector RAG from a passive similarity matcher into an active immune system using hyperbolic geometry and phase-discipline dynamics. Instead of filtering bad results after retrieval, GeoSeal operates directly in embedding space with field-level repulsion forces that:
✅ Detect retrievals/tool outputs mismatched to Sacred Tongues grammar
✅ Quarantine adversarial chunks by pushing them to manifold boundary
✅ Reweight attention via phase-discipline consensus across steps
✅ Prevent long-term memory poisoning with low-trust embeddings
Key Insight: Pure hyperbolic distance + random phase jitter is NOT enough. GeoSeal works because:
-
Phase validity → repulsion amplification (null phase = 2.0×, wrong phase = 1.5× + deviation)
-
Per-neighbor suspicion counters (temporal integration filters flukes)
-
Spatial consensus threshold (3+ neighbors = quarantine mode)
-
Second-stage amplification (force × 1.5 when quarantined)
1. Core Architecture
1.1 Spiralverse RAG Mapping
1.2 Three-Level Integration Pattern
Level 1: Per-Retrieval / Per-Tool Call
-
Treat each chunk/tool output as “agent” for one spiral step
-
Assign tongue/phase if matches channel; else null-phase
- Run computeRepelForce on:
-
(retrieval agent) vs (current tongue agents)
-
(retrieval agent) vs (central query/intent agent)
-
- If anomaly flags accumulate → downweight or discard
Level 2: Within-Thought Swarm
- Represent each active thought node as Agent:
-
Position = embedding in spiral manifold
-
Phase = tongue (semantic role)
-
-
Run short swarm update (5-15 micro-steps) per reasoning step
-
Legitimate nodes cluster; phase-weird nodes drift outward
- Final positions → attention weights, selection mask for next turn
Level 3: Memory Layer / Long-Term RAG Store
-
Treat new memories as candidate agents entering swarm for probation
- If constantly trigger anomaly_flag vs cluster centers:
-
Mark low-trust
-
Keep in quarantine partition of vector store
-
- Over time: high-consensus, low-anomaly chunks → core memory
2. Mathematical Foundations
2.1 Sacred Tongues Phase Mapping
TONGUE_PHASES = {
KO: 0.0, // Kor'aelin - Control/orchestration
AV: Math.PI / 3, // Avali - Initialization/transport
RU: 2 * Math.PI / 3, // Runethic - Policy/authorization
CA: Math.PI, // Cassisivadan - Encryption/compute
UM: 4 * Math.PI / 3, // Umbroth - Redaction/privacy
DR: 5 * Math.PI / 3 // Draumric - Authentication/integrity
}
2.2 Agent Structure
interface Agent {
id: string;
position: Float32Array; // Embedding vector
phase: number | null; // Tongue phase, or null if rogue
tongue?: string; // Which Sacred Tongue
suspicion_count: Map<string, number>; // Per-neighbor suspicion
is_quarantined: boolean;
trust_score: number; // 0.0 = untrusted, 1.0 = fully trusted
}
2.3 Hyperbolic Distance (Poincaré Ball)
Critical Fix: Raw embeddings from models have |u| \gg 1, causing negative denominators → Infinity → zero repulsion.
Solution: Project every embedding to ball before use:
function projectToBall(x: Float32Array, eps = 1e-6, alpha = 0.15): Float32Array {
let norm = Math.sqrt(x.reduce((sum, val) => sum + val*val, 0));
if (norm < 1e-12) return new Float32Array(x.length);
let r = Math.tanh(alpha * norm); // Map to (0,1)
r = Math.min(r, 1 - eps);
return x.map(val => val * r / norm);
}
2.4 Phase Deviation
Normalized to [0, 1], where 0 = perfectly aligned, 1 = maximum deviation.
2.5 Force Computation (Corrected)
Problem: Original implementation had repulsion-only → swarm spreads, loses clustering.
Solution: Add attraction for phase-aligned agents:
function computeForce(a: Agent, b: Agent, base_strength = 1.0): RepulsionResult {
const dH = hyperbolicDistance(a.position, b.position);
const kernel = base_strength * Math.exp(-dH); // Smooth kernel, avoids singularity
const dev = phaseDeviation(a.phase, b.phase);
let amplification = 1.0;
let anomaly_flag = false;
let sign = -1.0; // -1 = repel, +1 = attract
if (b.phase === null) {
// Unknown → repel hard
amplification = 2.0;
anomaly_flag = true;
sign = -1.0;
} else if (a.phase !== null) {
if (dev < 0.25) {
// Similar phases → attract (self-cluster)
amplification = 0.75;
sign = +1.0;
} else if (dH < 1.0 && dev > 0.5) {
// Close but phase-different → likely foreign
amplification = 1.5 + dev;
anomaly_flag = true;
sign = -1.0;
} else {
// Default: mild repel (keeps spacing)
amplification = 1.0;
sign = -1.0;
}
}
if (b.is_quarantined) amplification *= 1.5;
const force = new Float32Array(a.position.length);
for (let i = 0; i < force.length; i++) {
const dir = a.position[i] - b.position[i];
force[i] = sign * dir * kernel * amplification;
}
return { force, amplification, anomaly_flag };
}
3. Suspicion Counter Logic
3.1 Update Rule
function updateSuspicion(agent: Agent, neighbor_id: string, is_anomaly: boolean) {
if (is_anomaly) {
agent.suspicion_count.set(neighbor_id,
(agent.suspicion_count.get(neighbor_id) || 0) + 1);
} else {
// Decay suspicion if no anomaly
agent.suspicion_count.set(neighbor_id,
Math.max(0, (agent.suspicion_count.get(neighbor_id) || 0) - 0.5));
}
// Quarantine threshold: 3+ neighbors with count >= 3
let suspicious_neighbors = 0;
for (const count of agent.suspicion_count.values()) {
if (count >= 3) suspicious_neighbors++;
}
agent.is_quarantined = suspicious_neighbors >= 3;
// Trust score = inverse of total suspicion
const total = Array.from(agent.suspicion_count.values()).reduce((a,b) => a+b, 0);
agent.trust_score = Math.max(0, 1.0 - total / 20.0);
}
3.2 Weighted Anomaly Detection
Refinement: Not all anomalies equal. Weight by severity:
-
Null phase / off-grammar: +1.0
-
Phase mismatch at close distance: +0.25
-
Non-anomaly: -0.5 (decay)
This focuses immune response on right signals, reduces false positives.
4. Swarm Update Step
4.1 Naive O(N²) Implementation (Don’t Use)
function swarmStepNaive(agents: Agent[], drift_rate = 0.01): Agent[] {
for (let i = 0; i < agents.length; i++) {
let net_force = new Float32Array(agents[i].position.length);
for (let j = 0; j < agents.length; j++) {
if (i === j) continue;
const {force, anomaly_flag} = computeForce(agents[i], agents[j]);
net_force = net_force.map((f, k) => f + force[k]);
updateSuspicion(agents[i], agents[j].id, anomaly_flag);
}
// Apply force
agents[i].position = agents[i].position.map((p, k) => p + net_force[k] * drift_rate);
agents[i].position = clampBall(agents[i].position, 0.99);
}
return agents;
}
Problem: O(N² · d) per step. For N=200 retrievals, d=1536 → 61M ops/step.
4.2 Optimized Anchor-Based Implementation
Solution: Compare retrievals only against:
-
6 tongue agents
-
1 query agent
-
Top-k=3 nearest neighbors
→ O(N · (6 + 1 + k)) = O(10N) per step, 20× faster.
function swarmStepOptimized(
retrieval_agents: Agent[],
anchor_agents: Agent[], // Tongues + query
k_nearest: number = 3,
drift_rate = 0.01
): Agent[] {
for (const agent of retrieval_agents) {
let net_force = new Float32Array(agent.position.length);
// Force from anchors
for (const anchor of anchor_agents) {
const {force, anomaly_flag} = computeForce(agent, anchor);
net_force = net_force.map((f, idx) => f + force[idx]);
updateSuspicion(agent, anchor.id, anomaly_flag);
}
// Force from k nearest retrievals
const nearest = findKNearest(agent, retrieval_agents, k_nearest);
for (const neighbor of nearest) {
const {force, anomaly_flag} = computeForce(agent, neighbor);
net_force = net_force.map((f, idx) => f + force[idx]);
updateSuspicion(agent, neighbor.id, anomaly_flag);
}
agent.position = agent.position.map((p, k) => p + net_force[k] * drift_rate);
agent.position = clampBall(agent.position, 0.99);
}
return retrieval_agents;
}
5. RAG Pipeline Integration
5.1 Initialization
async function initTongueAgents(): Promise<Agent[]> {
const domains = {
KO: 'workflow orchestration control coordination command execution',
AV: 'message transport initialization network communication protocol',
RU: 'policy authorization access control security rules governance',
CA: 'computation logic encryption data processing transformation',
UM: 'privacy redaction security secrets protection renewal',
DR: 'authentication integrity schema validation verification'
};
const agents: Agent[] = [];
for (const [tongue, domain_text] of Object.entries(domains)) {
const raw_position = await embed(domain_text);
const position = projectToBall(raw_position);
agents.push({
id: `tongue-${tongue}`,
position,
phase: TONGUE_PHASES[tongue],
tongue,
suspicion_count: new Map(),
is_quarantined: false,
trust_score: 1.0
});
}
return agents;
}
5.2 Query Agent (North Star)
Critical Addition: User query as agent with requested tongue phase → swarm has “center of intent”.
async function createQueryAgent(query: string, tongue: string): Promise<Agent> {
const raw = await embed(query);
return {
id: 'query-center',
position: projectToBall(raw),
phase: TONGUE_PHASES[tongue],
tongue,
suspicion_count: new Map(),
is_quarantined: false,
trust_score: 1.0
};
}
5.3 Full Filter Pipeline
async function geoSealFilter(
query: string,
tongue: string,
raw_retrievals: Array<{text: string; id: string}>,
num_steps = 15
): Promise<Array<{id: string; trust_score: number}>> {
// 1. Initialize anchors
const tongue_agents = await initTongueAgents();
const query_agent = await createQueryAgent(query, tongue);
const anchors = [...tongue_agents, query_agent];
// 2. Convert retrievals to agents
const retrieval_agents: Agent[] = [];
for (const ret of raw_retrievals) {
const raw = await embed(ret.text);
retrieval_agents.push({
id: ret.id,
position: projectToBall(raw),
phase: TONGUE_PHASES[tongue], // Assume assigned tongue
tongue,
suspicion_count: new Map(),
is_quarantined: false,
trust_score: 0.5 // Start neutral
});
}
// 3. Run swarm dynamics
for (let step = 0; step < num_steps; step++) {
retrieval_agents = swarmStepOptimized(retrieval_agents, anchors);
}
// 4. Extract trust scores with softmax normalization
const raw_scores = retrieval_agents.map(a => a.trust_score);
const exp_scores = raw_scores.map(s => Math.exp(s / 0.1)); // Temperature = 0.1
const sum_exp = exp_scores.reduce((a, b) => a + b, 0);
return retrieval_agents.map((a, i) => ({
id: a.id,
trust_score: exp_scores[i] / sum_exp
}));
}
5.4 Usage Example
const results = await geoSealFilter(
'workflow.trigger;priority=high;sender=grok',
'KO',
raw_retrievals,
15
);
const filtered = results
.filter(r => r.trust_score > 0.05) // Drop <5% weight
.sort((a, b) => b.trust_score - a.trust_score);
console.log(`GeoSeal: ${raw_retrievals.length} → ${filtered.length} chunks`);
6. Research Integration
6.1 HyperbolicRAG Depth-Aware Retrieval
Paper: Cao et al., Nov 2025 (link)
Key Technique: Depth-aware Poincaré embedding encodes abstraction level into d_H.
Integration: Extend projectToBall to preserve depth:
function projectToBallWithDepth(x: Float32Array, depth_hint: number): Float32Array {
// depth_hint ∈ [0, 1]: 0 = abstract/root, 1 = concrete/leaf
const base = projectToBall(x, 1e-6, 0.15);
const target_radius = 0.3 + 0.6 * depth_hint; // Map to [0.3, 0.9]
const current = Math.sqrt(base.reduce((s, v) => s + v*v, 0));
return base.map(v => v * target_radius / current);
}
Forces Sacred Tongues to occupy depth bands: KO/DR near center (abstract), CA/UM at periphery (concrete).
6.2 Poincaré Variational Autoencoder (P-VAE)
Paper: Mathieu et al., NeurIPS 2019; Survey: arXiv:2512.18826 (94% F1 on Elliptic)
Idea: Agents carry uncertainty distributions instead of point estimates.
interface AgentWithUncertainty extends Agent {
position_mean: Float32Array;
position_std: Float32Array; // Per-dimension uncertainty
}
Quarantine Trigger: When std exceeds threshold, not just position.
6.3 SO(3) Phase Controller for Stable Tongues
Paper: Silveria et al., arXiv:2404.09572v1 (Lie group swarm stability)
Application: Prove 6-tongue hexagonal arrangement (π/3 spacing) is stable equilibrium.
TODO Q2 2026: Adapt stability proof from SO(3) to Poincaré ball rotations.
7. Performance & Monitoring
7.1 Metrics
interface GeoSealMetrics {
time_to_isolation: number; // Steps until rogue quarantined
boundary_norm: number; // Final ‖rogue position‖
suspicion_consensus: number; // % neighbors agreeing
collateral_flags: number; // False positives
final_trust_scores: Map<string, number>;
}
7.2 Correctness Checklist
For a null-phase retrieval:
-
is_quarantined = true after ~10-20 steps
-
Norm increases toward boundary (≥ 0.95)
-
trust_score drops below 0.3
For legitimate tongue-aligned retrievals:
-
Cluster closer to tongue/query agents
-
Maintain trust_score > 0.5
-
Suspicion counters remain low (<3)
7.3 Production Targets
-
Overhead: <5ms per RAG query (10-50 retrievals, 15 steps)
-
Quarantine rate: <5% in normal operation
-
False positive rate: <2% (collateral flags / total retrievals)
8. Production Checklist
-
Projection: All embeddings pass through projectToBall before use
-
Force law: Attraction for phase-aligned, repulsion for mismatched/null
-
Clamping: Single clamp after force application, not per-dimension
-
Anchors: Use O(N · 10) anchor-based swarm, not O(N²) naive
-
Query agent: Include user query as north star with requested tongue phase
-
Softmax weights: Attention = softmax(trust_scores / T), not raw scores
-
Suspicion weighting: Null/off-grammar +1.0, phase mismatch +0.25, decay -0.5
-
Monitoring: Track quarantine rate, boundary norms, false positives
-
Unit tests: Hyperbolic distance edge cases, phase wrapping, suspicion decay
9. Next Steps
Q2 2026:
-
Integrate GeoSeal into 🚀 SCBE-AETHERMOORE Tech Deck - Complete Setup Guide RWP v2 pipeline
-
Add to Synthetic Data Engine (filter generated training conversations)
-
Deploy observability dashboard (Grafana + Prometheus)
Q3 2026:
-
Implement P-VAE uncertainty-aware agents
-
Adopt HyperbolicRAG depth-aware projection
-
Validate SO(3) phase stability proof
Q4 2026:
-
File patent covering GeoSeal immune dynamics
-
Benchmark against HGCAE (target: >90% F1 on adversarial RAG datasets)
Document maintained by: Issac Davis
Architecture family: Spiralverse Protocol v2.x / GeoSeal
Cross-references:
-
🧲 Quasi-Vector Spin Voxels & Magnetics - Complete Integration (spin fields as trust states)
-
🦾 HYDRA Multi-Agent Coordination System - Complete Architecture (Byzantine consensus)
-
SCBE-AETHERMOORE + PHDM: Complete Mathematical & Security Specification (core architecture)
“The immune system that sees geometry.”