SCBE-AETHERMOORE Integration Roadmap

Vision: A unified AI security and orchestration platform combining cryptographic security, multi-agent coordination, and workflow automation.

Philosophy: This is a passion project built to completion over years, not rushed to market. Every component is thoughtfully integrated.


🎯 The Complete Vision

SCBE-AETHERMOORE is one unified platform - a complete AI security and orchestration system. Think of it as a full stack:

Bottom Layer: Mathematical security (hyperbolic geometry, harmonic scaling)
Middle Layer: Cryptographic primitives (PQC, Sacred Tongues, RWP v2.1)
Top Layer: AI orchestration (Fleet Engine, Roundtable, Autonomy)

All three layers work together as one product. Once complete, we can package it differently for different markets (security SDK vs. full platform), but it’s built as one cohesive system.


📊 Current Status (v3.0.0)

Fully Implemented

Pillar 1: Cryptographic Security Core

  • 14-Layer Security Architecture
  • Hyperbolic Geometry (Poincaré Ball)
  • Harmonic Scaling Law: H(d,R) = R^(d²)
  • Breath Transform: B(p,t) = tanh(‖p‖ + A·sin(ωt))·p/‖p‖
  • Möbius Addition (hyperbolic vector ops)
  • PHDM (16 Canonical Polyhedra)
  • Post-Quantum Crypto (ML-KEM, ML-DSA)
  • Topological CFI
  • Anti-Fragile Design

Location: src/crypto/, src/harmonic/, src/symphonic/

Pillar 2: Sacred Tongues Protocol (Partial)

  • 6 Sacred Tongues Defined
    • KO (Koraelin): Control & Orchestration
    • AV (Avali): I/O & Messaging
    • RU (Runethic): Policy & Constraints
    • CA (Cassisivadan): Logic & Computation
    • UM (Umbroth): Security & Privacy
    • DR (Draumric): Types & Structures
  • SacredTongueTokenizer (bijective byte↔token)
  • 16×16 prefix/suffix grids (256 tokens per tongue)
  • SpiralSeal SS1 Cipher with spell-text encoding
  • Integration with PQC primitives

Location: src/symphonic_cipher/scbe_aethermoore/spiral_seal/

User Interfaces

  • Interactive CLI with 5-module tutorial
  • AI Agent (Q&A, code library, security scanner)
  • Memory Shard Demo (60-second pitch)
  • Web Demos (customer demo, product landing, universe sim)

Location: scbe-cli.py, scbe-agent.py, demo_memory_shard.py, scbe-aethermoore/


🚧 To Be Implemented

Pillar 2: Sacred Tongues Protocol (Complete)

RWP v2.1 Multi-Sign Envelopes

Real World Protocol for secure AI-to-AI communication.

Components:

// Envelope structure
interface RWP2MultiEnvelope<T = any> {
  ver: '2.1';
  primary_tongue: TongueID; // Intent domain
  aad: string; // Authenticated data
  ts: number; // Unix milliseconds
  nonce: string; // Replay protection
  payload: string; // Base64URL encoded
  sigs: Partial<Record<TongueID, string>>; // Multi-signatures
}

// Domain-separated signing
function signRoundtable<T>(
  env: Omit<RWP2MultiEnvelope<T>, 'sigs'>,
  keyring: Record<string, Buffer>,
  signingTongues: TongueID[],
  kid?: string
): RWP2MultiEnvelope<T>;

// Verification with policy enforcement
function verifyRoundtable(
  env: RWP2MultiEnvelope,
  keyring: Record<string, Buffer>,
  replayWindowMs?: number
): TongueID[];

function enforceRoundtablePolicy(validTongues: TongueID[], policy: PolicyLevel): boolean;

Policy Matrix:

  • standard: Any valid signature
  • strict: Requires RU (Policy)
  • secret: Requires UM (Security)
  • critical: Requires RU + UM + DR (full consensus)

Security Features:

  • Domain-separated HMAC-SHA256
  • Replay protection (timestamp + nonce)
  • Multi-signature consensus
  • Policy-based authorization
  • Quantum-resistant upgrade path (hybrid with ML-DSA)

Implementation Plan:

  1. Create src/spiralverse/rwp.ts - Core envelope logic
  2. Create src/spiralverse/policy.ts - Policy matrix
  3. Create src/spiralverse/keyring.ts - Key management
  4. Create src/spiralverse/index.ts - Public API
  5. Add tests: tests/spiralverse/rwp.test.ts
  6. Add Python bindings: src/symphonic_cipher/spiralverse/

Integration Points:

  • Use Sacred Tongues for domain separation
  • Integrate with SpiralSeal SS1 for payload encryption
  • Connect to Fleet Engine for agent-to-agent messaging

Pillar 3: Multi-Agent Orchestration

Fleet Engine

Orchestrates 10 specialized agent roles with parallel execution.

Agent Roles:

  1. Architect (KO) - System design, architecture decisions
  2. Security (UM) - Threat analysis, vulnerability scanning
  3. Policy (RU) - Compliance, governance, constraints
  4. Compute (CA) - Execution, transformations, processing
  5. Transport (AV) - I/O, messaging, data flow
  6. Schema (DR) - Types, structures, data models
  7. Analyst - Data analysis, insights
  8. Tester - Quality assurance, validation
  9. Documenter - Technical writing, specs
  10. Integrator - System integration, glue code

Architecture:

interface FleetEngine {
  // Agent management
  registerAgent(role: AgentRole, config: AgentConfig): void;
  removeAgent(agentId: string): void;

  // Task orchestration
  assignTask(task: Task, role: AgentRole): Promise<TaskResult>;
  parallelExecute(tasks: Task[]): Promise<TaskResult[]>;

  // Communication (via RWP v2.1)
  sendMessage(from: string, to: string, envelope: RWP2MultiEnvelope): void;
  broadcast(from: string, envelope: RWP2MultiEnvelope): void;

  // Monitoring
  getAgentStatus(agentId: string): AgentStatus;
  getFleetMetrics(): FleetMetrics;
}

Implementation Plan:

  1. Create src/orchestration/fleet.ts - Core engine
  2. Create src/orchestration/agents/ - Agent implementations
  3. Create src/orchestration/tasks.ts - Task management
  4. Create src/orchestration/messaging.ts - RWP integration
  5. Add tests: tests/orchestration/fleet.test.ts

Roundtable Service

Consensus-based decision making with debate modes.

Debate Modes:

  • Round-robin: Each agent speaks in turn
  • Topic-based: Agents speak when relevant to topic
  • Consensus: Continue until agreement threshold reached
  • Adversarial: Devil’s advocate mode for robustness

Architecture:

interface RoundtableService {
  // Session management
  createSession(topic: string, participants: string[]): SessionId;
  joinSession(sessionId: SessionId, agentId: string): void;

  // Debate
  propose(sessionId: SessionId, agentId: string, proposal: Proposal): void;
  vote(sessionId: SessionId, agentId: string, vote: Vote): void;

  // Consensus
  checkConsensus(sessionId: SessionId): ConsensusResult;
  finalizeDecision(sessionId: SessionId): Decision;

  // Modes
  setDebateMode(sessionId: SessionId, mode: DebateMode): void;
}

Consensus Algorithm:

  • Byzantine fault tolerance (3+ agents)
  • Weighted voting (by tongue security level)
  • Quorum requirements (configurable)
  • Timeout handling (default to safe state)

Implementation Plan:

  1. Create src/orchestration/roundtable.ts - Core service
  2. Create src/orchestration/consensus.ts - Consensus logic
  3. Create src/orchestration/debate.ts - Debate modes
  4. Add tests: tests/orchestration/roundtable.test.ts

Autonomy Engine

3-level autonomy system with 14-action matrix.

Autonomy Levels:

  1. Level 1 (Supervised): Human approval required for all actions
  2. Level 2 (Semi-Autonomous): Pre-approved actions automatic, others require approval
  3. Level 3 (Autonomous): All actions automatic, human notified

14-Action Matrix: | Action | L1 | L2 | L3 | Tongue | Risk | |——–|—-|—-|—-|—-|——| | Read file | ✓ | ✓ | ✓ | AV | Low | | Write file | ✓ | ✓ | ✓ | CA | Medium | | Delete file | ✓ | ⚠️ | ✓ | RU | High | | Execute code | ✓ | ⚠️ | ✓ | CA | High | | Network request | ✓ | ✓ | ✓ | AV | Medium | | API call | ✓ | ✓ | ✓ | AV | Medium | | Database query | ✓ | ⚠️ | ✓ | DR | Medium | | Database write | ✓ | ⚠️ | ✓ | DR | High | | Deploy service | ✓ | ⚠️ | ⚠️ | KO | Critical | | Modify config | ✓ | ⚠️ | ✓ | RU | High | | Create resource | ✓ | ✓ | ✓ | CA | Medium | | Delete resource | ✓ | ⚠️ | ⚠️ | RU | Critical | | Grant permission | ✓ | ⚠️ | ⚠️ | UM | Critical | | Revoke permission | ✓ | ⚠️ | ⚠️ | UM | Critical |

Legend: ✓ = Auto, ⚠️ = Approval Required

Architecture:

interface AutonomyEngine {
  // Level management
  setAutonomyLevel(agentId: string, level: AutonomyLevel): void;
  getAutonomyLevel(agentId: string): AutonomyLevel;

  // Action authorization
  requestAction(agentId: string, action: Action): Promise<AuthResult>;
  approveAction(actionId: string, approved: boolean): void;

  // Policy
  setActionPolicy(action: ActionType, policy: ActionPolicy): void;
  getActionPolicy(action: ActionType): ActionPolicy;
}

Implementation Plan:

  1. Create src/orchestration/autonomy.ts - Core engine
  2. Create src/orchestration/actions.ts - Action definitions
  3. Create src/orchestration/approval.ts - Approval workflow
  4. Add tests: tests/orchestration/autonomy.test.ts

Vector Memory

Semantic search with embeddings for agent knowledge.

Architecture:

interface VectorMemory {
  // Storage
  store(agentId: string, memory: Memory): Promise<MemoryId>;
  retrieve(agentId: string, query: string, k?: number): Promise<Memory[]>;

  // Embeddings
  embed(text: string): Promise<number[]>;
  similarity(a: number[], b: number[]): number;

  // Management
  delete(memoryId: MemoryId): Promise<void>;
  clear(agentId: string): Promise<void>;
}

Implementation Plan:

  1. Create src/orchestration/memory.ts - Core storage
  2. Create src/orchestration/embeddings.ts - Embedding generation
  3. Integrate with existing 6D harmonic voxel storage
  4. Add tests: tests/orchestration/memory.test.ts

Workflow Integrations

n8n Integration

Visual workflow automation.

Features:

  • Custom SCBE nodes for n8n
  • RWP v2.1 envelope creation/verification
  • Fleet Engine task submission
  • Roundtable consensus triggers

Implementation Plan:

  1. Create src/integrations/n8n/ - n8n node definitions
  2. Create webhook endpoints for n8n callbacks
  3. Add authentication via RWP envelopes
  4. Publish to n8n community nodes

Make.com Integration

No-code automation platform.

Features:

  • SCBE modules for Make.com
  • Visual Sacred Tongues selector
  • Policy matrix configuration
  • Fleet task routing

Implementation Plan:

  1. Create src/integrations/make/ - Make.com modules
  2. Create REST API endpoints
  3. Add OAuth2 authentication
  4. Publish to Make.com marketplace

Zapier Integration

Popular automation platform.

Features:

  • SCBE triggers and actions
  • RWP envelope handling
  • Agent task creation
  • Consensus voting

Implementation Plan:

  1. Create src/integrations/zapier/ - Zapier app definition
  2. Create REST API endpoints
  3. Add authentication
  4. Publish to Zapier app directory

🗺️ Implementation Phases

Phase 1: Foundation (Current - v3.0.0)

  • Cryptographic core
  • Sacred Tongues definitions
  • SpiralSeal SS1
  • Basic demos

Phase 2: Protocol Layer (v3.1.0) 🚧

Target: Q2 2026

Deliverables:

  • RWP v2.1 TypeScript SDK
  • RWP v2.1 Python bindings
  • Policy matrix implementation
  • Keyring management
  • Replay protection
  • Multi-signature verification
  • Integration tests
  • Documentation

Success Criteria:

  • Agents can send/receive RWP envelopes
  • Policy enforcement works correctly
  • Replay attacks are prevented
  • 95% test coverage

Phase 3: Orchestration Core (v3.2.0) 🔮

Target: Q3 2026

Deliverables:

  • Fleet Engine implementation
  • 10 agent roles defined
  • Task management system
  • Agent-to-agent messaging (via RWP)
  • Parallel execution
  • Monitoring and metrics
  • Integration tests
  • Documentation

Success Criteria:

  • 10 agents can work in parallel
  • Tasks are routed correctly
  • RWP envelopes secure communication
  • Performance: <100ms task routing

Phase 4: Consensus Layer (v3.3.0) 🔮

Target: Q4 2026

Deliverables:

  • Roundtable Service implementation
  • 4 debate modes
  • Consensus algorithm (Byzantine fault tolerance)
  • Weighted voting
  • Session management
  • Integration with Fleet Engine
  • Integration tests
  • Documentation

Success Criteria:

  • 3+ agents reach consensus
  • Byzantine fault tolerance works
  • Debate modes function correctly
  • Performance: <5s consensus time

Phase 5: Autonomy System (v3.4.0) 🔮

Target: Q1 2027

Deliverables:

  • Autonomy Engine implementation
  • 3 autonomy levels
  • 14-action matrix
  • Approval workflow
  • Policy configuration
  • Integration with Fleet Engine
  • Integration tests
  • Documentation

Success Criteria:

  • Autonomy levels enforce correctly
  • Approval workflow functions
  • Action policies configurable
  • Audit trail complete

Phase 6: Memory & Knowledge (v3.5.0) 🔮

Target: Q2 2027

Deliverables:

  • Vector Memory implementation
  • Embedding generation
  • Semantic search
  • Integration with 6D harmonic storage
  • Memory persistence
  • Integration tests
  • Documentation

Success Criteria:

  • Semantic search works accurately
  • Embeddings integrate with harmonic voxels
  • Performance: <50ms retrieval
  • Scalability: 1M+ memories

Phase 7: Workflow Integrations (v4.0.0) 🔮

Target: Q3 2027

Deliverables:

  • n8n custom nodes
  • Make.com modules
  • Zapier app
  • REST API for integrations
  • OAuth2 authentication
  • Webhook handlers
  • Documentation
  • Marketplace submissions

Success Criteria:

  • All 3 platforms integrated
  • Published to marketplaces
  • 95% uptime SLA
  • <200ms API response time

🏗️ Architecture Integration

How It All Fits Together

┌─────────────────────────────────────────────────────────────────┐
│                    USER INTERFACES                              │
│  CLI │ AI Agent │ Web Demos │ n8n │ Make.com │ Zapier          │
└─────────────────────────────────────────────────────────────────┘
                              ↓
┌─────────────────────────────────────────────────────────────────┐
│                  ORCHESTRATION LAYER                            │
│  ┌──────────────┐  ┌──────────────┐  ┌──────────────┐         │
│  │ Fleet Engine │  │  Roundtable  │  │   Autonomy   │         │
│  │  (10 roles)  │  │  (Consensus) │  │   (3 levels) │         │
│  └──────────────┘  └──────────────┘  └──────────────┘         │
│                              ↓                                   │
│  ┌──────────────────────────────────────────────────┐          │
│  │          Vector Memory (Semantic Search)         │          │
│  └──────────────────────────────────────────────────┘          │
└─────────────────────────────────────────────────────────────────┘
                              ↓
┌─────────────────────────────────────────────────────────────────┐
│                  PROTOCOL LAYER (RWP v2.1)                      │
│  ┌──────────────┐  ┌──────────────┐  ┌──────────────┐         │
│  │   Envelopes  │  │    Policy    │  │   Keyring    │         │
│  │ (Multi-Sign) │  │    Matrix    │  │  Management  │         │
│  └──────────────┘  └──────────────┘  └──────────────┘         │
└─────────────────────────────────────────────────────────────────┘
                              ↓
┌─────────────────────────────────────────────────────────────────┐
│              SACRED TONGUES FRAMEWORK                           │
│  KO │ AV │ RU │ CA │ UM │ DR                                   │
│  (Domain Separation + Semantic Routing)                         │
└─────────────────────────────────────────────────────────────────┘
                              ↓
┌─────────────────────────────────────────────────────────────────┐
│              CRYPTOGRAPHIC SECURITY CORE                        │
│  ┌──────────────┐  ┌──────────────┐  ┌──────────────┐         │
│  │ SpiralSeal   │  │  Symphonic   │  │     PQC      │         │
│  │     SS1      │  │    Cipher    │  │  (ML-KEM/DSA)│         │
│  └──────────────┘  └──────────────┘  └──────────────┘         │
│                              ↓                                   │
│  ┌──────────────────────────────────────────────────┐          │
│  │    14-Layer SCBE Architecture + PHDM             │          │
│  │    (Hyperbolic Geometry + Harmonic Scaling)      │          │
│  └──────────────────────────────────────────────────┘          │
└─────────────────────────────────────────────────────────────────┘

Data Flow Example: Agent Task Execution

  1. User submits task via CLI/Web/Integration
  2. Fleet Engine receives task, determines agent role
  3. Autonomy Engine checks authorization level
  4. RWP v2.1 creates signed envelope with appropriate tongue
  5. Agent receives envelope, verifies signatures
  6. Sacred Tongues routes to correct semantic domain
  7. Cryptographic Core decrypts payload (if encrypted)
  8. Agent executes task
  9. Vector Memory stores result for future retrieval
  10. Roundtable (if needed) validates result via consensus
  11. RWP v2.1 creates response envelope
  12. Fleet Engine returns result to user

📝 Documentation Plan

Technical Documentation

  • RWP v2.1 Specification
  • Fleet Engine Architecture
  • Roundtable Consensus Protocol
  • Autonomy Engine Design
  • Vector Memory Implementation
  • Integration Guides (n8n, Make.com, Zapier)
  • API Reference (TypeScript + Python)

User Documentation

  • Getting Started with Orchestration
  • Creating Custom Agents
  • Configuring Autonomy Levels
  • Setting Up Roundtable Sessions
  • Workflow Integration Tutorials
  • Best Practices Guide

Research Documentation

  • Sacred Tongues Semantic Framework (paper)
  • RWP v2.1 Security Analysis (paper)
  • Multi-Agent Consensus in Byzantine Environments (paper)
  • Harmonic Scaling for Agent Coordination (paper)

🛡️ Security Hardening + Anti-Malware

  • Playbook: See SECURITY_HARDENING_PLAYBOOK.md for the full stack (endpoint AV/EDR, IDS/NDR, supply chain scanning, sandboxing, and runbooks).
  • Tooling (evergreen, open-source first): ClamAV + YARA, Falco (eBPF), osquery, Wazuh/CrowdSec, Zeek/Suricata, AdGuard/Pi-hole, syft→grype or trivy, semgrep/bandit/ruff, gitleaks, cosign, gVisor/Kata/Firecracker.
  • User flexibility: Baseline protections always on; high-assurance and isolation modes for regulated tenants; overrides require justification + logging.
  • Self-hosted coding platform: Coder or Gitpod Self-Hosted (or code-server) on signed devcontainers/Nix images with pre-commit gates (semgrep, trivy, syft/grype, gitleaks) and sandboxed runtimes (gVisor/Kata). Ephemeral by default; persistence only for approved volumes.

🧪 Testing Strategy

Unit Tests

  • All components have 95%+ coverage
  • Property-based testing with fast-check/hypothesis
  • Edge case coverage

Integration Tests

  • RWP envelope creation/verification
  • Fleet Engine task routing
  • Roundtable consensus
  • Autonomy enforcement
  • End-to-end workflows

Security Tests

  • Replay attack prevention
  • Signature forgery attempts
  • Byzantine agent behavior
  • Policy bypass attempts
  • Quantum attack simulations

Performance Tests

  • Task routing latency (<100ms)
  • Consensus time (<5s)
  • Memory retrieval (<50ms)
  • Scalability (1000+ agents)

🎓 Learning Resources

For Developers

  • Sacred Tongues semantic framework
  • RWP v2.1 protocol specification
  • Fleet Engine architecture
  • Roundtable consensus algorithm
  • Integration tutorials

For Researchers

  • Mathematical foundations
  • Security proofs
  • Consensus protocols
  • Byzantine fault tolerance
  • Harmonic scaling theory

For Users

  • Quick start guides
  • Video tutorials
  • Example workflows
  • Best practices
  • Troubleshooting

🚀 Success Metrics

Technical Metrics

  • Test coverage: 95%+
  • Performance: <100ms task routing
  • Uptime: 99.99%
  • Scalability: 1000+ concurrent agents
  • Security: Zero critical vulnerabilities

Adoption Metrics

  • GitHub stars: 1000+
  • NPM downloads: 10K+/month
  • Integration marketplace listings: 3+
  • Community contributors: 50+
  • Research citations: 10+

Business Metrics

  • Patent granted
  • Commercial licenses: 10+
  • Enterprise deployments: 5+
  • Revenue: $100K+/year
  • Partnerships: 3+

💡 Philosophy & Principles

Design Principles

  1. Security First: Every component cryptographically secured
  2. Semantic Clarity: Sacred Tongues provide clear domain separation
  3. Byzantine Resilience: System works even with malicious agents
  4. Harmonic Scaling: Natural security gradients via mathematics
  5. Fail-to-Noise: No information leakage on failure
  6. Context-Based: “Right entity, right place, right time, right reason”

Development Principles

  1. Quality Over Speed: Take years if needed to get it right
  2. Mathematical Rigor: Prove security properties formally
  3. Clean Architecture: Clear separation of concerns
  4. Comprehensive Testing: 95%+ coverage, property-based tests
  5. Documentation First: Write docs before code
  6. Community Driven: Open source, welcoming contributors

Passion Project Values

  1. Innovation: Push boundaries of what’s possible
  2. Excellence: Never compromise on quality
  3. Learning: Continuous improvement and growth
  4. Sharing: Open source for the community
  5. Impact: Build something that matters
  6. Joy: Love the process, not just the outcome

📞 Contact & Community

  • GitHub: https://github.com/issdandavis/scbe-aethermoore-demo
  • Email: issdandavis@gmail.com
  • Patent: USPTO #63/961,403
  • License: MIT (with commercial restrictions)

Last Updated: January 18, 2026
Version: 3.0.0
Status: Foundation Complete, Orchestration In Progress
Timeline: Multi-year passion project
Commitment: See it through to completion


“This is not just better security. This is a fundamentally different way of thinking about security and AI coordination.”

“From ‘Do you have the key?’ to ‘Are you the right entity, in the right context, at the right time, doing the right thing, for the right reason?’“

🛡️ Stay secure. Stay coordinated. Stay innovative.


© 2026 Aethermoore - Issac Davis, Founder | Patent Pending (63/961,403) | Products | Demo

This site uses Just the Docs, a documentation theme for Jekyll.